
frameD: Toward Automated Identification of
Embedded Frameworks in Firmware Images

Jorik van Nielen1, Andreas Peter2, and Andrea Continella1

1 University of Twente, The Netherlands
2 University of Oldenburg, Germany

{j.j.vannielen,a.continella}@utwente.nl
andreas.peter@uol.de

Abstract. In the era of the Internet of Things, firmware security analy-
ses have become tremendously important to protect networks and guar-
antee safety-critical operations. Indeed, the firmware running on smart
devices (which are increasingly adopted also in critical infrastructures)
often contains security vulnerabilities, and delivering timely updates
proved to be challenging, both from a technical perspective and due
to a lack of support from device vendors. In particular, firmware images
present difficulties that hinder automated analyses and patching, mostly
because their code and data are opaquely intermixed and squashed to-
gether on top of embedded development frameworks. In this paper, we
propose a new lightweight approach to automatically analyze firmware
images and identify the embedded frameworks they are built upon. Our
approach facilitates reverse engineering, reducing the scope for security
analyses and assisting the vulnerability detection and patching process
of embedded devices. We implement our approach in frameD, and we
evaluate it on a dataset of 536 firmware images from different devices
and vendors. Our system identifies embedded frameworks with an accu-
racy of 83%, and we perform a case study to combine frameD with an
existing patch injection framework, demonstrating to be a helpful and
effective tool for security analysts and reverse engineers.

Keywords: Embedded Frameworks · Firmware · Reversing · IoT

1 Introduction

The adoption of Internet of Things (IoT) devices has grown explosively over
the last decade [31]. In fact, IoT devices present an affordable and accessible
option to add connectivity to physical objects that were not able to cross the
barrier to the digital world before. This feature is attractive for both individuals
and organizations, and manufacturers meet this demand with a wide variety of
devices, such as thermostats, lighting, and smoke detectors, but also more criti-
cal ones such as pacemaker monitors and smart locks. Moreover, smart devices
are increasingly adopted within critical infrastructures, where they enable the
remote management of cyber-physical systems, such as industrial robots and
actuators [11].

2 J. van Nielen et al.

While the extra connectivity of IoT devices brings value to the users, it also
opens up new attack vectors. Attacks on smart devices over the Internet or
Bluetooth are nowadays a real and practical scenario [11]. If vulnerable, threat
actors can mount attacks against devices to alter their behavior or take full
control of them. In fact, the number of cyber-attacks mounted against IoT de-
vices has almost tripled in the last two years [42]. With the popularity of IoT
devices in vital industrial processes and critical infrastructures, the security of
their firmware is an area of utmost importance. To further highlight the state
of (in)security in smart devices, new advances in vulnerability discovery for em-
bedded firmware [6,7,26,35,33,40] has significantly increased the rate of security
advisories released and disclosed by researchers and practitioners.

However, the disclosure of vulnerabilities to the vendors does not guarantee
a fast deployment of patches to ensure the security of all vulnerable devices.
One recurring cause of the long patch latency is vendors dropping support for
older devices [44,16]—besides, update mechanisms are themselves often vulner-
able [19,45]. Another critical cause is the complexity of producing and testing
patches. Many IoT devices run custom firmware, and generating a patch often
requires extensive testing. Since a low patch latency is crucial for IoT devices,
especially when deployed in critical infrastructures, researchers investigated ap-
proaches to introduce quick “hot” patches before a fully-fledged patch is released
by the vendor [16,17,30].

Third-party patching for embedded firmware without the cooperation of the
vendor is a significantly challenging task that is made even harder by the wide
adoption of development frameworks (known as embedded frameworks)—i.e.,
embedded-specific development frameworks that abstract the development and
provide OS-like features to firmware developers. During compilation, the embed-
ded framework and user application are squashed together into a single image
(also known as blob). Such firmware blobs typically do not contain debugging
symbols, are structured in custom binary formats, and have no clear distinctions
between code and data segments, making automated analyses hard. Besides, de-
vice manufacturers usually do not disclose that their devices are vulnerable be-
fore releasing a patch. Therefore, potentially affected organizations need to track
if their devices are vulnerable to newly disclosed vulnerabilities, especially tak-
ing into account any vulnerabilities that affect libraries and frameworks that the
device firmware relies on. Thus, knowing what frameworks firmware images are
built upon is of great use for security management. Moreover, with information
about the adopted embedded framework, security analysts and reverse engineers
know what functions to expect in the firmware. This helps analysts distinguish
framework functions from user application functions, which, since frameworks
introduce hundreds of functions, significantly eases the reverse engineering pro-
cess. All in all, the automated identification of the embedded frameworks within
firmware images can be of great use to reverse engineers for security analyses. In
the academic community, the process of uncovering components and dependen-
cies within software is part of a broader field known as Software Composition
Analysis (SCA).

frameD: Automated Identification of Embedded Frameworks 3

While existing SCA approaches have shown great results, they are unfortu-
nately not directly applicable to the firmware domain. Binary-to-binary SCA
approaches, such as FirmSec [49] and Asm2Vec [12], require compiled embed-
ded framework object files. However, the compilation of embedded frameworks
involves manual efforts and has shown to be time-consuming at scale [38], hin-
dering automation. Binary-to-source techniques, such as BinaryAI [20] and OS-
SPolice [13], do not require the compilation. However, these approaches leverage
information stored in the binary that is not always present in firmware blobs,
such as exported function names. Besides, embedded frameworks often make
use of macros to suit the many compilation targets, which can highly impact the
semantics on a function level. Current binary-to-source SCA techniques do not
account for this dynamic setting.

In this work, we propose a lightweight approach to analyze firmware images
and identify the embedded frameworks they are built upon. By identifying the
embedded frameworks, our approach assists security analyses by revealing the
main firmware component and gives reverse engineers a starting point for recov-
ering function symbols in firmware images. Additionally, our approach can assist
in the patching of firmware. For instance, state-of-the-art firmware patching ap-
proaches such as HERA [30] and Shimware [16] require a hooking location where
additional checks can be performed. Currently, the hooking location has to be
manually provided by the analyst. Our approach eases the process of finding a
hooking location by giving security analysts information about the structure of
the adopted frameworks and facilitating the function symbols recovery process.

To identify embedded frameworks, our approach leverages the strings embed-
ded within firmware blobs to produce fingerprints—the intuition is that strings
carry significant semantic information to characterize software components. In
fact, previous work showed the effectiveness of using strings for library detec-
tion [27,18,46,20,13], but to the best of our knowledge, we are the first to apply
this method to embedded framework identification. More specifically, our ap-
proach first recognizes and filters out irrelevant strings, and then compares the
remaining ones to string literals identified in the source code of embedded frame-
works. To improve the accuracy, we take into account the existence of framework
clones and third-party library reuse.

We implement a proof-of-concept of our approach in frameD. In our ex-
periments, frameD shows promising results, correctly identifying 83% of the
frameworks in a labeled dataset of 536 firmware images, spanning eight different
frameworks. Moreover, for four of the most popular embedded frameworks, in-
cluding Mbed [25], our system achieves correct identification for all of the tested
firmware samples.

To demonstrate the real-world applicability and practicality of frameD, we
describe a real-world use case. We combine frameD with Shimware [16], an
existing patch injection tool, to identify the framework adopted by a firmware
image and use this information to find a suitable location for a patch, ultimately
fixing a security flaw in the firmware image.

4 J. van Nielen et al.

In summary, our contributions are as follows:

– We propose a new lightweight, string-based approach to characterize embed-
ded frameworks.

– We implement our approach in frameD, a pipeline to automatically identify
the frameworks used in real-world firmware images.

– We evaluate our approach on a dataset gathered from four prior works,
containing 536 labeled firmware samples. Additionally, we demonstrate a
use-case where we combine frameD with an existing patch injection tool to
ease the patching process.

In the spirit of open science, our source code is publicly available at https:
//github.com/utwente-scs/frameD.

2 Background & Challenges

In this section, we provide background information on the firmware structure
and types, and how such structure and the adoption of embedded frameworks
affect the analysis and reversing processes. Then, we present the challenges in
the firmware domain for embedded framework identification.

2.1 Firmware Analysis

Firmware Structure and Types. The low processing power and long battery
lifetime requirements of embedded devices make it sometimes infeasible to run
full operating systems (OS) like Linux or Windows. Instead, firmware features
embedded operating systems, or even embedded frameworks without a logical
separation between kernel and application code. In the literature, these two types
of firmware are referred to as Type-2 and Type-3 firmware, respectively [29].
While detecting the use of Linux in firmware images is an explored topic [4], the
identification of Type-2 and Type-3 frameworks is not. In this paper, we refer
to both embedded operating systems and embedded frameworks as embedded
frameworks.
Embedded Frameworks. To take away the complexity of the hardware pro-
gramming from the programmer, various abstractions are used in practice. As
a basis, Hardware Abstraction Layers (HALs) provide functions to developers
to perform hardware operations without knowledge of the underlying hardware.
HAL functions are small functions that specifically target one hardware con-
figuration. In most cases, HAL functions are provided by chip vendors directly.
Besides ease of communication with the hardware, developers might want to sim-
plify the development further with a higher level of abstraction. Another highly
demanded feature is OS-like capabilities such as scheduling of processes or tasks.
Embedded frameworks provide such functionalities in varying degrees of sophis-
tication. Some frameworks, like FreeRTOS [15], solely provide a couple of simple
operating system functionalities, while, for instance, RIOT [34] adds more func-
tionalities such as a full system shell and a complete file system implementation.

https://github.com/utwente-scs/frameD
https://github.com/utwente-scs/frameD

frameD: Automated Identification of Embedded Frameworks 5

User application(s)

Real-time
OS

Embedded framework

Storage
library

Connectivity
library

Other
libraries

Hardware abstraction layer (drivers)

Hardware

Fig. 1 – An embedded framework consists of several components or a subset
thereof. The hardware abstraction layer features hardware-specific functions that
provide access to hardware resources. The real-time OS component enables pro-
cess scheduling and resource management. A storage library adds file system
functionality to the firmware. A connectivity library implements a network proto-
col, such as Bluetooth. Additionally, embedded frameworks can include libraries
for cryptographic functions, data handling, etc. The user application is not part
of the embedded framework. It implements the process logic and operates on
top of the provided embedded framework functionality.

To simplify the development process even further, developers turn to libraries
for performing higher-level tasks. Popular libraries provide functionalities such
as communication protocols (e.g., HTTP), data processing (e.g., compression),
and user interface capabilities. In this research, we consider embedded frame-
works in a broad sense as any embedded-specific development framework that
aims to abstract the development and provide OS-like features to firmware de-
velopers. Some frameworks purely implement the HAL with the option to add
third-party libraries, while others feature a more complete embedded OS with
ad-hoc libraries. Figure 1 visualizes the different components of the embedded
framework in the context of the complete firmware image.

Firmware Analysis and Reversing. Non-general-purpose OS-based firmware
is difficult to analyze and patch. In fact, the projects are mostly compiled into
a single executable file, without any distinction between data, operating system
functions, and user application functions. Also, firmware images are compiled
without debugging symbols. Thus, analyzing such firmware is a daunting task.
The use of embedded frameworks further increases the difficulty of reversing
firmware images. Not only introduce frameworks more functions, they also add
custom abstraction layers and sometimes apply object-oriented programming
techniques. Thus, it becomes more labor-intensive to determine the semantics
of functions and identify the relevant ones, creating challenges for automation.
However, if the framework can be identified, the process becomes much sim-
pler. Equipped with knowledge of the framework, the analyst can consult the
documentation of the framework to learn more about the firmware structure.
Additionally, the analyst can use existing SCA techniques to locate important
functions in the firmware image.

6 J. van Nielen et al.

2.2 Challenges for Firmware Composition Analysis

The properties of the firmware domain pose several challenges for the identifica-
tion of embedded frameworks.

Firmware blobs are stripped and use opaque binary formats. Existing
binary-to-source SCA techniques leverage various features for fingerprinting. Two
examples are the exported function names and the data present in data segments.
However, with the opaque binary format used for firmware images, many of these
normally easily retrievable fingerprinting sources are either very hard to extract
or not present at all. For instance, OSSPolice [13] uses exported function names
to identify present libraries. This information is however not present in firmware
blobs. To successfully identify frameworks in firmware images, the solution must
rely solely on features that can be reliably extracted.

Embedded framework functions are semantically different, depending
on the build target. Embedded frameworks have been designed to support
many architectures and microcontrollers. To achieve this portability, embedded
frameworks widely use macros to differentiate the behavior for each platform.
Unfortunately, existing binary-to-source SCA techniques do not take this into
account. As a result, many of the features used by the state-of-the-art cannot
be used reliably for identifying the frameworks present in firmware images. For
instance, SCA techniques frequently use the number of basic blocks contained in
a function as a fingerprint for that function. However, in the firmware domain this
might not be a reliable feature. For example, TCP/IP implementation functions
are semantically different for boards that support IPv6, and as a result have
different basic block counts. Consequently, matching functions based on features
such as basic blocks is more challenging in the domain of embedded frameworks.

Embedded frameworks are hard to compile in an automated fashion.
Binary-to-binary SCA techniques require the compilation of all components that
you want to identify. In our scenario, this requires the compilation of all embed-
ded frameworks. Previous works mentioned the extensive manual effort required
for the compilation task [38]. With hundreds of embedded frameworks available
on GitHub and many of them receiving continuous updates, manual compilation
becomes a significant limitation that hinders automation.

Embedded frameworks might contain third-party libraries. It is com-
mon for embedded frameworks to use open-source libraries to facilitate certain
features. For example, Contiki [8] uses a third-party library for the FAT file
system implementation. A solid approach to identifying embedded frameworks
should ensure that the identification of a third-party library does not result in
the incorrect identification of the embedded framework.

Existing SCA approaches have not been designed to address the challenges
that occur when identifying embedded frameworks. Therefore, a new, embed-
ded framework-specific SCA technique is required.

frameD: Automated Identification of Embedded Frameworks 7

3 Methodology

String filter Embedded
frameworkSource code

embedded frameworks

String matcher

Source code
string extractor

Firmware

Binary
string extractor

Fig. 2 – Simplified representation of frameD. The arrows represent the flow of
data between the different components.

We present frameD, our approach to identifying embedded frameworks in
firmware images. At a high level, frameD takes as input an embedded firmware
image and a set of embedded frameworks (including their source code) and
evaluates whether the given image is built on top of any of the user-provided
frameworks. Figure 2 shows a high-level overview of the complete pipeline.

3.1 Frameworks Collection and Processing

The first step of our methodology is to build a large collection of embedded
frameworks to identify within firmware images. Embedded frameworks are gen-
erally released as open-source code to the public, and they can be easily found
online. Two popular examples are Mbed [25] and RIOT [34]. After building a
satisfactory complete collection, the Source code string extractor extracts
the hardcoded strings from each project.

As a second step, the String filter applies multiple filters to the strings
extracted from the open-source projects. A first filter removes common and short
strings. Very short strings are removed since they are not strong indicators and
would increase the number of false positives. They include omnipresent strings
such as a single format string specifier, e.g. “%d”. Moreover, very common strings,
like “error”, should have a lower impact on matches than for example “Error:
new serial object is using same UART as STDIO”, a string only found in Mbed.
Furthermore, some strings are present across firmware samples, also when no
framework is used. Examples are “0123456789abcdef” and “localhost”. Thus, we
filter out popular strings to reduce false positives. Additionally, frameD filters
out strings that are found in common firmware libraries. Since many open-source
frameworks use common third-party libraries in their source code, these strings
could result in false positives when a firmware image uses a library that is also
used by an embedded framework. By filtering out the strings found in common
embedded libraries the number of false positives is reduced.

While the construction of a complete string collection of all embedded frame-
works is easily automated, it is still a time-consuming process. Luckily, this
process only has to be conducted once. Thereafter, we can use the local string
database to evaluate any number of firmware samples.

8 J. van Nielen et al.

3.2 Framework Identification

After the construction of the embedded framework string collection, the Binary
string extractor extracts the strings from the given firmware image. The ex-
tracted firmware strings and filtered source code strings are then handed to the
String matcher. For each framework, the String matcher computes how many
exact string matches are present. An additional step is required to accurately
identify embedded frameworks. This is because many open-source frameworks
are clones of more popular frameworks, with minimal changes. These clones
often contain the same signatures as the original repository, impacting the per-
formance of our tool. To limit the negative impact of clones, we cluster the
potentially matching frameworks based on whether the matching strings are the
same. A String score is calculated for each cluster using Equation (3). To cal-
culate the String score, we first calculate the String popularity for each
string present in the cluster, by counting how many clusters in total contain this
string (Equation (2)). The String score of the cluster is then calculated as the
sum of the inverse String popularity of all the strings present in the cluster.
The String score ensures that unique strings have a bigger impact on the final
result, since unique strings are strong indicators for an embedded framework.
Finally, the cluster with the highest String score is selected as the matching
cluster. If the String score of the selected cluster is higher than a predeter-
mined threshold, the most popular framework in that cluster is returned as the
identified framework.

I(string s, cluster c) =

{
1 if s ∈ c

0 otherwise
(1)

String popularity(string s) =
∑

c∈clusters

I(s, c) (2)

String score(cluster c) =
∑

string s∈c

1

String popularity(s)
(3)

Employing the clustering technique in a more general SCA approach might
result in clustering together two libraries that are both present, and returning
only one. In the domain of embedded framework identification such cases of
false negatives are not expected, since only one framework is used to build the
firmware image around. The embedded framework can be seen as the operating
system of the firmware image, thus it is not practical to use multiple frameworks
in the same image. This is why frameD looks for one framework, and not
multiple ones.

3.3 Implementation details

To implement the Source code string extractor, frameD uses the ANTLR
lexer [1]. For our proof-of-concept implementation, we provide ANTLR with C and
C++ grammars. However, frameD can easily be extended to other languages by

frameD: Automated Identification of Embedded Frameworks 9

providing additional grammars. For example, adding Rust support only requires
providing a Rust grammar, which can be easily found online.

For the implementation of Binary string extractor, frameD uses the
Linux utility strings. This utility scans through the binary looking for subse-
quent bytes that represent valid ASCII characters, and returns them as strings.

In the final step of the String matcher, frameD clusters similar frameworks
together. We then use the GitHub star count as a popularity metric to select
the final framework from the cluster.

4 Evaluation

In this section, we describe the process we follow to build our database of frame-
works, and we evaluate the performance of our tool in identifying frameworks in
embedded firmware.

4.1 Database Creation

To assess the performance of frameD, we start by constructing the local string
database. We use the GitHub API to query for open-source embedded frame-
works and collect their source code. To search for embedded frameworks, we use
six different queries:

– Embedded operating system;
– Operating system microcontrollers;
– Internet of Things operating system;
– OS IoT;
– OS Internet of Things;
– RTOS.

These specific queries have been selected to ensure that all firmware framework
projects we found on GitHub through a manual search are present in the final list.
For each query, we search in the description of all GitHub repositories and select
the top 100 C/C++ repositories based on star count. We clone the resulting
404 repositories locally. We add one additional framework manually, namely the
Arduino framework. While Arduino is a widely adopted framework, it cannot be
found on GitHub using our queries since it only has a very short description. The
String filter reduces the number of strings extracted from the source codes in
multiple steps. First, we remove string duplicates and decode escape sequences,
to match how strings are stored in the firmware images. Then, we remove strings
that are less than 6 characters long. This filters out strings that do not contain
a lot of information about the repository, such as “bytes”, “done”, and also single
characters. Next, we filter out the most popular strings. The popularity of strings
in our dataset is shown in Figure 3. In our dataset, we notice many strings
occurring 22 times. This turned out to be strings from Mbed clones, which we
do not want to filter out. This is why we decided to filter out strings with more
than 22 occurrences. A few strings that are filtered out this way are “failed”,

10 J. van Nielen et al.

100 101 102 103 104 105

String index, sorted by # of occurrences

100

101
#

of
oc

cu
rr

en
ce

s
ac

ro
ss

fr
am

ew
or

ks

Fig. 3 – String popularity in our framework string database, with double log-
arithmic axes. E.g., as depicted with the black dotted line, the 10,000th most
frequently occurring string is present in 6 embedded frameworks in our collection.

“abcdefghijklmnopqrstuvwxyz”, and “%s%s%s”. Filtering out popular strings has
shown to be effective in prior works [27]. The final step we perform is filtering out
strings from common libraries that are used for embedded systems. We found
that many frameworks use common third-party libraries. Without filtering out
library strings, frameD would raise many false positives. To filter out library
strings, we locally cloned all library repositories listed in a popular reference
collection called “awesome-embedded-software” [3]. We extracted the strings in
a similar fashion to how we extracted the framework strings.

4.2 Pipeline Performance

We evaluate the performance of frameD on a dataset of 536 labeled firmware
images. We construct the dataset by combining the datasets from four prior
works. We specifically select collections with firmware samples that use popular
embedded frameworks, to ensure the experiments are similar to real-world sce-
narios. Our dataset features eight different embedded frameworks and a variety
of target microcontrollers. Besides, twelve of the samples do not use a framework.
Each firmware sample has either been labeled with a framework by the source,
or we manually reverse engineer the firmware images to determine the adopted
frameworks. The complete list of sources, frameworks, and sample counts of the
firmware samples is shown in Table 1.

To examine the capabilities of our pipeline, we measure its performance on
the 536 labeled firmware images. The framework identification takes 3 seconds
per firmware sample on average, in a single-threaded environment.

Figure 4 shows the performance for the framework detection compared to
different string score thresholds. At a threshold of 3.5, 83% of the samples are

frameD: Automated Identification of Embedded Frameworks 11

Dataset Framework No. Samples

Feng et al. (P2IM) [14]

Arduino [2] 5
RIOT [34] 1
FreeRTOS [15] 1
None 3

Clements et al. (HALucinator) [7] Contiki [8] 2
None 9

Scharnowski et al. (Fuzzware) [35]
Zephyr [48] 10
Contiki-NG [9] 2
Mbed [25] 10

Shen et al. [37]

Zephyr [48] 193
Mbed [25] 32
NuttX [32] 188
FreeRTOS [15] 80

Total 536

Table 1 – Sources, frameworks, and counts of firmware samples that we used in
our evaluation.

labeled correctly. At a lower threshold of 2, 18% of the framework identifica-
tions are false positives, while at a higher threshold of 5 results in only 1%
false positives, but more than 20% false negatives. For Mbed the accuracy is
100% at lower thresholds. Only at thresholds starting from 6, do false negatives
start occurring. Both NuttX and Zephyr achieve 90%+ accuracy at String score
thresholds under 4. Interestingly, for both frameworks we notice that from the
threshold of 4, false positives are reducing, and false negatives are increasing.

The detection results per framework and for three different threshold values
are shown in Table 2.

Using a low threshold (e.g., 2) results in few false negatives for all frameworks.
This can be a useful metric to detect the use of a framework. Although the
wrong framework might be detected, the security analyst can use the result to
further research the used framework. Samples that do not use a framework can
be discarded early. Using a higher threshold such as 5, on the other hand, can
be useful in scenarios where one wants to be sure that the detected framework
is correct. For example, at the threshold of 6 only 4 of the 536 samples were
incorrectly labeled with a framework. However, there are 110 false negatives at
this high threshold. As a result, a firmware blob that has not been identified
with a framework might still use a framework.

For the cases where the framework identification is incorrect, we see a few
trends. First, we notice that some frameworks use a low number of hard-coded
strings, limiting the effectiveness of frameD for these specific frameworks. As
a result, Arduino and FreeRTOS are harder to detect with frameD, and have
high false negative rates independent of the string-score threshold. On the other

12 J. van Nielen et al.

Framework TPs FPs TNs FNs
T

hr
es

ho
ld

=
2

FreeRTOS 27 54 N/A 0
Zephyr 193 10 N/A 0
Mbed 42 0 N/A 0
NuttX 171 17 N/A 0

Arduino 0 5 N/A 0
RIOT 1 0 N/A 0
Contiki 2 0 N/A 0

Contiki-NG 2 0 N/A 0
None N/A 11 1 N/A

Total 438 97 1 0

T
hr

es
ho

ld
=

3.
5

FreeRTOS 27 35 N/A 19
Zephyr 193 3 N/A 7
Mbed 42 0 N/A 0
NuttX 171 17 N/A 0

Arduino 0 1 N/A 4
RIOT 1 0 N/A 0
Contiki 2 0 N/A 0

Contiki-NG 2 0 N/A 0
None N/A 4 8 N/A

Total 438 60 8 30

T
hr

es
ho

ld
=

6

FreeRTOS 24 0 N/A 57
Zephyr 174 0 N/A 29
Mbed 41 0 N/A 1
NuttX 167 3 N/A 18

Arduino 0 0 N/A 5
RIOT 1 0 N/A 0
Contiki 2 0 N/A 0

Contiki-NG 2 0 N/A 0
None N/A 1 11 N/A

Total 411 4 11 110

Table 2 – The results of frameD when running over 536 labeled firmware
samples, with different string score thresholds.

frameD: Automated Identification of Embedded Frameworks 13

0 2 4 6

Threshold (string score)

0.0

0.2

0.4

0.6

0.8

1.0
R

at
io

Full dataset

0 2 4 6

Threshold (string score)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Mbed

0 2 4 6

Threshold (string score)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

NuttX

0 2 4 6

Threshold (string score)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Zephyr

Accuracy
False positive rate

False negative rate
Recall

Precision

Fig. 4 – frameD detection performance metrics on the 536 firmware samples.

hand, larger frameworks that feature many strings are accurately identified by
frameD, across firmware samples. Second, we observe a low number of false
positives with a balanced threshold (3.5) in place. We manually investigated the
false positive cases. We found that the matches mostly occur due to the use of
libraries, which are not present in our library collection that is used for string
filtering.

We recognize that using an absolute cut-off threshold is a rather naive method.
However, we found that for our dataset, which is diverse in nature, it performs
well. Nonetheless, we envision future research on the design of a more accurate
approach to identifying embedded frameworks.

14 J. van Nielen et al.

5 Case Study

We conduct a case study to demonstrate the application of frameD to assist
in reversing and patching IoT firmware. Specifically, we focus on the Atmel
6LoWPAN Sender firmware image from the HALucinator paper [7] and study
how frameD can be integrated with Shimware [16] to enhance its I/O function
tracking, ultimately leading to patch injection. Shimware uses an approach called
IOFinder to determine I/O functions in firmware images. IOFinder combines
static and dynamic analysis to find functions that perform I/O functions. One
limitation of IOFinder is that it is not designed to process firmware images that
use a larger embedded framework. In the case of the Atmel image, due to the
use of a large embedded framework Contiki, IOFinder is unable to detect several
relevant I/O functions. As a result, Shimware fails to locate the function where
the patch should be introduced [16].

In the practical scenario where we want to patch the Atmel 6LoWPAN Sender
firmware image, we can leverage frameD to discover the use of the Contiki em-
bedded framework. As we detect the use of a large framework, we know that the
results of IOFinder are likely to be incomplete. Therefore, we decide not to use
IOFinder. Instead, to recover the function symbols, we can now compile a Con-
tiki example project and use existing binary-to-binary SCA techniques to recover
symbols in the binary. For this example, we use Libmatch from HALucinator [7]
and reveal the locations and names of 170 functions. Next, the analyst looking
to apply the patch can now go over the functions, determine which functions
handle the relevant input, and subsequently identify the location for Shimware
to inject the patch. Depending on the specific vulnerability, it is possible to apply
patches in higher-level functions than the I/O functions. For example, assume
that we want to apply a patch to incoming network traffic to filter malicious
payloads. We can locate the tcpip_input function, which is a Contiki function
called by the network driver when a new TCP/IP packet is received, and which
represents a perfect hook for our patch. With the knowledge of the address of
the tcpip_input function, in combination with the Shimware tooling, we insert
the patch into the original firmware image.

6 Discussion

We discuss the limitations of frameD and directions for future research.

Frameworks with few strings. The fundamentals of our approach rely on
the presence of strings in the framework and in the firmware image. Generally,
all frameworks do contain these strings, but this does not guarantee that they
will be present in the final firmware image. To reduce the final image size, un-
used functions are often left out during the linking phase. As a result, also the
strings used in these functions are not included in the final firmware image. This
explains why frameD has low detection rates for samples using some specific
frameworks. An example is FreeRTOS [15], a minimal framework that does not

frameD: Automated Identification of Embedded Frameworks 15

contain much more than HAL functions and some basic scheduling. Since mini-
mal frameworks mostly provide the HAL functions, other approaches are poten-
tially a better fit to detect these types of frameworks. Compiling HAL functions
automatically is less challenging than more advanced frameworks, as has been
shown and used for a similar approach before (e.g., Libmatch [7]). Thus, one
could automatically compile a database of HAL objects and apply Libmatch or
a similar approach to detect the HAL functions in the firmware. In the context
of firmware patching, IOFinder as used by Shimware [16] is a technique to find
relevant IO functions, but only works for smaller frameworks. To summarize,
frameD provides an approach to aid reverse engineers recover symbols and as-
sist in the patching process of larger embedded frameworks, whereas prior works
have shown approaches that are effective for smaller embedded frameworks.
Completeness of Framework Database. To construct our list of frame-
works, we used various GitHub queries. While this covers a large portion of the
available frameworks, it is not complete. For instance, Software Development
Kits (SDKs) for embedded firmware often come with their own frameworks pre-
installed. While these frameworks are often open source, you will not necessarily
find them on GitHub, or we found them to have short descriptions and are hard
to query for. frameD does currently not have the capability to detect these
frameworks. However, they can be added manually to the database with ease.
One other set of frameworks that are currently absent and more difficult to add
are private frameworks developed and used by device manufacturers.
Completeness of Library Database. To reduce false positives, we filtered out
strings present in commonly used third-party libraries. Selecting the libraries for
this list has to be done carefully, as it can easily remove true positives. We chose
to use a curated list, as described in Section 4. However, in our evaluation, a
false positive occurred due to a library missing from our collection. The accuracy
of frameD relies partly on creating a good list of libraries.
Automation in Function Matching. Our pipeline is fully automated when
it comes to creating the string database and identifying the used frameworks.
However, the next step in the pipeline would be to recover the symbols fully
automatically. To achieve this goal, we have explored the idea of automated
compilation of the framework, followed by binary-to-binary SCA. However, fully
automating this process requires more research. One of the main challenges for
achieving this automation is the nature of the framework projects. They have
been developed to ease the development for embedded devices, and provide con-
figuration files and build specifications to adjust the environment for specific
hardware. Compiling the object files without the configuration enabled will often
fail. Thus, it is required to manually set up a build environment. The alternative
is binary-to-source matching. While this is a more complicated approach and no
existing projects match our requirements, we see this as the most feasible way
forward. Additionally, binary-to-source matching could also be used to resolve
the limitations of the lower performance for frameworks that use fewer strings.
Compressed firmware images. Like any other static firmware analysis ap-
proach, frameD struggles with compressed firmware images, as compression

16 J. van Nielen et al.

can result in failure to extract strings from firmware images. To resolve this,
one could integrate frameD with existing solutions that unpack known formats
(e.g., Binwalk [5]).

7 Related work

Many previous works have been conducted with similar goals to ours. In this
section, we discuss their benefits, downsides, limitations, and assumptions.

There have been various efforts to simplify the reverse engineering and anal-
ysis of firmware. Muench et al. [29] focussed on grouping firmware images into
types of operating systems. Thomas et al. [43] use both static and dynamic
analysis to improve the disassembly quality. Firmline [4] provides a pipeline to
automatically detect the architecture and base addresses of non-Linux-based
firmware images. With frameD, we contribute to the area of firmware analysis
by identifying embedded framework usage.

Several studies have been conducted in the area of patching of embedded
devices. HERA [30] and RapidPatch [17] both apply hot-patches to running em-
bedded devices, without rebooting the device. However, the focus of both HERA
and RapidPatch is solely on how to inject the patch, not where. Dispatch [23]
proposes an approach to patching the firmware of Robotic Aerial Vehicles. They
target controller component functions and locate them through the identification
of trigonometric functions. This approach does not transfer to a more generic
case of function identification. Shimware [16] presents a set of tools to ease the
patching of non-Linux based firmware images. The main contributions are the
automated locating of I/O functions, finding a location to insert the patch with-
out breaking the functionality of the device, and finding and fixing firmware
validity checks. To locate the I/O functions, a hybrid approach combining static
and dynamic analysis is used. While it has proven effective for general firmware
images, it tends to miss functions if the firmware uses a larger embedded frame-
work. Moreover, the identified I/O functions are not labeled and still require
manual reverse engineering to reveal their exact purpose.

Software Component Analysis can be divided into approaches using binary-
to-binary matching or binary-to-source matching:

Binary-to-binary SCA. Libmatch [7] combines static and dynamic analysis
to locate Hardware Abstraction Layer functions. Asm2Vec [12] uses machine
learning to match functions across architecture and compiler optimization lev-
els. FirmSec [49] detects third-party component usage in both Linux-based and
non-Linux-based firmware images. However, none of these approaches is directly
applicable to the challenge of framework identification, due to the manual effort
required to compile embedded frameworks.

Binary-to-source SCA. BAT [18] uses strings to get an estimate of code reuse,
but does not address further challenges such as cloning. OSSPolice [13] leverages
strings, in combination with exported function names to detect the reuse of open
source software. Exported function names are however not present in firmware

frameD: Automated Identification of Embedded Frameworks 17

images. Bigmatch [27] identifies the use of open-source libraries in binary ex-
ecutables solely based on strings, but does not take into account the presence
of shared third-party libraries between repositories, nor does it tackle software
clones that have not been marked as such on GitHub. B2SFinder [46] matches
source code to binaries by using 7 binary features that can be extracted with
extra knowledge of the binary format. Most of these features are however not
present in firmware images.

When it comes to finding vulnerabilities in embedded firmware, various re-
search directions have been explored. First, fuzzing with devices in the loop
was a popular topic of research a couple of years ago [10,21,24,47]. While these
approaches have good results, they are limited to small-scale experiments and
analyses since the device has to be both available and set up. Recently, many
rehosting approaches have been proposed. There is a clear divide between papers
targeting Linux-based firmware images [16,41,22,28] and monolithic firmware im-
ages [7,14,50,35,39,36]. Most of these approaches focus on providing valid inputs
for MMIO addresses in memory or hardware abstraction layer functions.

8 Conclusion

With frameD, we presented an automated pipeline to identify embedded frame-
works within firmware images. frameD combines string matching and insights
in embedded frameworks to provide meaningful semantic annotations that facil-
itate reverse engineering and security analyses. We evaluated the performance
of frameD on a labeled dataset of 536 images, obtaining an accuracy of 83%.
By changing the threshold, our tool can be adjusted to fit scenarios where either
a low number of false positives or a low number of false negatives are required.
We envision our tool being used to assist both reverse engineers and automated
security pipelines that perform firmware analyses such as vulnerability discovery
and patching.

Acknowledgements

We would like to thank our reviewers for their valuable comments and inputs to
improve our paper. This work has been partially supported by the Dutch Min-
istry of Economic Affairs and Climate Policy (EZK) through the AVR project
“FirmPatch” and by the project P6 (Open Technology Programme No. 20475)
funded by the Dutch Research Council (NWO).

References

1. ANTLR. https://www.antlr.org/, accessed: 2024-02-14
2. Arduino. https://www.arduino.cc/, accessed: 2024-06-17
3. Awesome embedded resources for developers. https://github.com/iDoka/

awesome-embedded-software, accessed: 2024-02-14

https://www.antlr.org/
https://www.arduino.cc/
https://github.com/iDoka/awesome-embedded-software
https://github.com/iDoka/awesome-embedded-software

18 J. van Nielen et al.

4. Balgavy, A., Muench, M.: Firmline: a generic pipeline for large-scale analysis of
non-linux firmware. In: Proceedings of the Workshop on Binary Analysis Research
(BAR) (2024)

5. Binwalk. https://github.com/ReFirmLabs/binwalk, accessed: 2024-02-14
6. Chen, L., Wang, Y., Cai, Q., Zhan, Y., Hu, H., Linghu, J., Hou, Q., Zhang, C.,

Duan, H., Xue, Z.: Sharing more and checking less: Leveraging common input
keywords to detect bugs in embedded systems. In: Proceedings of the USENIX
Security Symposium (2021)

7. Clements, A.A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D., Kruegel,
C., Vigna, G., Bagchi, S., Payer, M.: HALucinator: Firmware re-hosting through
abstraction layer emulation. In: Proceedings of the USENIX Security Symposium
(2020)

8. Contiki. http://www.contiki-os.org/, accessed: 2024-06-17
9. Contiki-NG. https://www.contiki-ng.org/, accessed: 2024-06-17

10. Corteggiani, N., Camurati, G., Francillon, A.: Inception: System-wide security test-
ing of real-world embedded systems software. In: Proceedings of the USENIX Se-
curity Symposium (2018)

11. Cyber risks to critical infrastructure are on the rise, https://news.microsoft.com/
en-cee/2023/06/26/cyber-risks-to-critical-infrastructure-are-on-the-
rise/, accessed: 2024-02-14

12. Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: Boosting static representation ro-
bustness for binary clone search against code obfuscation and compiler optimiza-
tion. In: Proceedings of the IEEE Symposium on Security and Privacy (2019)

13. Duan, R., Bijlani, A., Xu, M., Kim, T., Lee, W.: Identifying open-source license
violation and 1-day security risk at large scale. In: Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS) (2017)

14. Feng, B., Mera, A., Lu, L.: P2IM: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling. In: Proceedings of the USENIX
Security Symposium (2020)

15. FreeRTOS. https://www.freertos.org/index.html, accessed: 2024-02-14
16. Gustafson, E., Grosen, P., Redini, N., Jha, S., Continella, A., Wang, R., Fu,

K., Rampazzi, S., Kruegel, C., Vigna, G.: Shimware: Toward practical security
retrofitting for monolithic firmware images. In: Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID) (2023)

17. He, Y., Zou, Z., Sun, K., Liu, Z., Xu, K., Wang, Q., Shen, C., Wang, Z., Li, Q.:
RapidPatch: Firmware hotpatching for real-time embedded devices. In: Proceed-
ings of the USENIX Security Symposium (2022)

18. Hemel, A., Kalleberg, K.T., Vermaas, R., Dolstra, E.: Finding software license
violations through binary code clone detection. In: Proceedings of the Working
Conference on Mining Software Repositories (2011)

19. Ibrahim, M., Continella, A., Bianchi, A.: AoT - attack on things: A security analysis
of IoT firmware updates. In: Proceedings of the IEEE Symposium on Security and
Privacy (2023)

20. Jiang, L., An, J., Huang, H., Tang, Q., Nie, S., Wu, S., Zhang, Y.: BinaryAI: Bi-
nary software composition analysis via intelligent binary source code matching. In:
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2024)

21. Kammerstetter, M., Platzer, C., Kastner, W.: Prospect: peripheral proxying sup-
ported embedded code testing. In: Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS) (2014)

https://github.com/ReFirmLabs/binwalk
http://www.contiki-os.org/
https://www.contiki-ng.org/
https://news.microsoft.com/en-cee/2023/06/26/cyber-risks-to-critical-infrastructure-are-on-the-rise/
https://news.microsoft.com/en-cee/2023/06/26/cyber-risks-to-critical-infrastructure-are-on-the-rise/
https://news.microsoft.com/en-cee/2023/06/26/cyber-risks-to-critical-infrastructure-are-on-the-rise/
https://www.freertos.org/index.html

frameD: Automated Identification of Embedded Frameworks 19

22. Kim, M., Kim, D., Kim, E., Kim, S., Jang, Y., Kim, Y.: Firmae: Towards large-
scale emulation of iot firmware for dynamic analysis. In: Proceedings of the Annual
Computer Security Applications Conference (ACSAC) (2020)

23. Kim, T., Ding, A., Etigowni, S., Sun, P., Chen, J., Garcia, L., Zonouz, S., Xu,
D., Tian, D.: Reverse engineering and retrofitting robotic aerial vehicle control
firmware using dispatch. In: Proceedings of the ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys) (2022)

24. Koscher, K., Kohno, T., Molnar, D.: SURROGATES: Enabling near-real-time dy-
namic analyses of embedded systems. In: Proceedings of the USENIX Workshop
on Offensive Technologies (WOOT) (2015)

25. Mbed. https://os.mbed.com/, accessed: 2024-02-14
26. Melotti, D., Rossi-Bellom, M., Continella, A.: Reversing and fuzzing the Google

Titan M chip. In: Proceedings of the Reversing and Offensive-Oriented Trends
Symposium (ROOTS) (2021)

27. Montesel, P.: Big Match - how i learned to stop reversing and love the strings,
https://conference.hitb.org/hitbsecconf2023hkt/materials/D1%20COMMSEC%
20Big%20Match%20-%20How%20I%20Learned%20to%20Stop%20Reversing%20and%
20Love%20the%20Strings%20-%20Paolo%20Montesel.pdf, accessed: 2023-12-10

28. Muench, M., Nisi, D., Francillon, A., Balzarotti, D.: Avatar 2: A multi-target or-
chestration platform. In: Proceedings of the Workshop on Binary Analysis Research
(BAR) (2018)

29. Muench, M., Stijohann, J., Kargl, F., Francillon, A., Balzarotti, D.: What you
corrupt is not what you crash: Challenges in fuzzing embedded devices. In: Pro-
ceedings of the Symposium on Network and Distributed System Security (NDSS)
(2018)

30. Niesler, C., Surminski, S., Davi, L.: Hera: Hotpatching of embedded real-time ap-
plications. In: Proceedings of the Symposium on Network and Distributed System
Security (NDSS) (2021)

31. Number of Internet of Things (IoT) connected devices worldwide from 2019 to
2021, with forecasts from 2022 to 2030, https://www.statista.com/statistics/
1183457/iot-connected-devices-worldwide/, accessed: 2024-03-20

32. NuttX. https://nuttx.apache.org/, accessed: 2024-06-17
33. Redini, N., Machiry, A., Wang, R., Spensky, C., Continella, A., Shoshitaishvili, Y.,

Kruegel, C., Vigna, G.: KARONTE: Detecting insecure multi-binary interactions
in embedded firmware. In: Proceedings of the IEEE Symposium on Security and
Privacy (2020)

34. RIOT. https://www.riot-os.org/, accessed: 2024-02-14
35. Scharnowski, T., Bars, N., Schloegel, M., Gustafson, E., Muench, M., Vigna, G.,

Kruegel, C., Holz, T., Abbasi, A.: Fuzzware: Using precise MMIO modeling for
effective firmware fuzzing. In: Proceedings of the USENIX Security Symposium
(2022)

36. Seidel, L., Maier, D.C., Muench, M.: Forming faster firmware fuzzers. In: Proceed-
ings of the USENIX Security Symposium (2023)

37. Shen, M., Davis, J.C., Machiry, A.: Towards automated identification of lay-
ering violations in embedded applications. In: Proceedings of the ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES) (2023)

38. Shen, M., Pillai, A., Yuan, B.A., Davis, J.C., Machiry, A.: An empirical study on
the use of static analysis tools in open source embedded software. arXiv preprint
arXiv:2310.00205 (2023)

https://os.mbed.com/
https://conference.hitb.org/hitbsecconf2023hkt/materials/D1%20COMMSEC%20Big%20Match%20-%20How%20I%20Learned%20to%20Stop%20Reversing%20and%20Love%20the%20Strings%20-%20Paolo%20Montesel.pdf
https://conference.hitb.org/hitbsecconf2023hkt/materials/D1%20COMMSEC%20Big%20Match%20-%20How%20I%20Learned%20to%20Stop%20Reversing%20and%20Love%20the%20Strings%20-%20Paolo%20Montesel.pdf
https://conference.hitb.org/hitbsecconf2023hkt/materials/D1%20COMMSEC%20Big%20Match%20-%20How%20I%20Learned%20to%20Stop%20Reversing%20and%20Love%20the%20Strings%20-%20Paolo%20Montesel.pdf
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://nuttx.apache.org/
https://www.riot-os.org/

20 J. van Nielen et al.

39. Srinivasan, J., Tanksalkar, S.R., Amusuo, P.C., Davis, J.C., Machiry, A.: To-
wards rehosting embedded applications as linux applications. In: Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE (2023)

40. Tay, H.J., Zeng, K., Vadayath, J.M., Raj, A.S., Dutcher, A., Reddy, T., Gibbs,
W., Basque, Z.L., Dong, F., Smith, Z., et al.: Greenhouse: Single-service rehosting
of Linux-based firmware binaries in user-space emulation. In: Proceedings of the
USENIX Security Symposium (2023)

41. Tay, H.J., Zeng, K., Vadayath, J.M., Raj, A.S., Dutcher, A., Reddy, T., Gibbs,
W., Basque, Z.L., Dong, F., Smith, Z., et al.: Greenhouse: Single-service rehosting
of linux-based firmware binaries in user-space emulation. In: Proceedings of the
USENIX Security Symposium (2023)

42. The tipping point: Exploring the surge in IoT cyberattacks globally, https://
blog.checkpoint.com/security/the-tipping-point-exploring-the-surge-in-
iot-cyberattacks-plaguing-the-education-sector/, accessed: 2024-02-14

43. Thomas, S.L., Van den Herrewegen, J., Vasilakis, G., Chen, Z., Ordean, M., Garcia,
F.D.: Cutting through the complexity of reverse engineering embedded devices.
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES)
(2021)

44. What happens when the sun sets on a smart product?, https://www.ftc.gov/
business- guidance/blog/2016/07/what- happens- when- sun- sets- smart-
product, accessed: 2023-12-22

45. Wu, Y., Wang, J., Wang, Y., Zhai, S., Li, Z., He, Y., Sun, K., Li, Q., Zhang,
N.: Your firmware has arrived: A study of firmware update vulnerabilities. In:
Proceedings of the USENIX Security Symposium (2023)

46. Yuan, Z., Feng, M., Li, F., Ban, G., Xiao, Y., Wang, S., Tang, Q., Su, H., Yu, C.,
Xu, J., et al.: B2sfinder: Detecting open-source software reuse in cots software. In:
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2019)

47. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.: Avatar: A framework to
support dynamic security analysis of embedded systems’ firmwares. In: Proceedings
of the Symposium on Network and Distributed System Security (NDSS) (2014)

48. Zephyr. https://www.zephyrproject.org/, accessed: 2024-06-17
49. Zhao, B., Ji, S., Xu, J., Tian, Y., Wei, Q., Wang, Q., Lyu, C., Zhang, X., Lin,

C., Wu, J., et al.: One bad apple spoils the barrel: Understanding the security
risks introduced by third-party components in iot firmware. IEEE Transactions on
Dependable and Secure Computing (2023)

50. Zhou, W., Guan, L., Liu, P., Zhang, Y.: Automatic firmware emulation through
invalidity-guided knowledge inference. In: Proceedings of the USENIX Security
Symposium (2021)

https://blog.checkpoint.com/security/the-tipping-point-exploring-the-surge-in-iot-cyberattacks-plaguing-the-education-sector/
https://blog.checkpoint.com/security/the-tipping-point-exploring-the-surge-in-iot-cyberattacks-plaguing-the-education-sector/
https://blog.checkpoint.com/security/the-tipping-point-exploring-the-surge-in-iot-cyberattacks-plaguing-the-education-sector/
https://www.ftc.gov/business-guidance/blog/2016/07/what-happens-when-sun-sets-smart-product
https://www.ftc.gov/business-guidance/blog/2016/07/what-happens-when-sun-sets-smart-product
https://www.ftc.gov/business-guidance/blog/2016/07/what-happens-when-sun-sets-smart-product
https://www.zephyrproject.org/

	frameD: Toward Automated Identification of Embedded Frameworks in Firmware Images

