
DEEPCASE: Semi-Supervised Contextual Analysis of Security Events

Thijs van Ede∗†, Hojjat Aghakhani†, Noah Spahn†, Riccardo Bortolameotti‡, Marco Cova§, Andrea Continella∗,
Maarten van Steen∗, Andreas Peter∗, Christopher Kruegel†, Giovanni Vigna†

∗University of Twente, †University of California, Santa Barbara, ‡ReaQta, §VMware, Inc.
{t.s.vanede, a.continella, m.r.vansteen, a.peter}@utwente.nl, {hojjat, ncs, chris, vigna}@cs.ucsb.edu,

r.bortolameotti@reaqta.com, covam@vmware.com

Abstract—Security monitoring systems detect potentially mali-
cious activities in IT infrastructures, by either looking for known
signatures or for anomalous behaviors. Security operators investi-
gate these events to determine whether they pose a threat to their
organization. In many cases, a single event may be insufficient to
determine whether certain activity is indeed malicious. Therefore,
a security operator frequently needs to correlate multiple events
to identify if they pose a real threat. Unfortunately, the vast
number of events that need to be correlated often overload
security operators, forcing them to ignore some events and,
thereby, potentially miss attacks. This work studies how to
automatically correlate security events and, thus, automate parts
of the security operator workload. We design and evaluate
DEEPCASE, a system that leverages the context around events to
determine which events require further inspection. This approach
reduces the number of events that need to be inspected. In
addition, the context provides valuable insights into why certain
events are classified as malicious. We show that our approach
automatically filters 86.72% of the events and reduces the manual
workload of security operators by 90.53%, while underestimating
the risk of potential threats in less than 0.001% of cases.

I. INTRODUCTION

Modern IT infrastructures face constant attacks and are,
therefore, continuously monitored. Activities from devices and
strategic points within the network are collected and processed
by various systems such as Network Security Monitors (NSM,
e.g., Zeek [33]) or Intrusion Detection Systems (IDS, e.g.,
Suricata1 or Snort2). These systems contain security event
detectors that collect information about security events (e.g.,
a new contacted host, the use of self-signed certificates, or
ports being scanned), which they send to a central Security
Operations Center (SOC). In a SOC, events are subsequently
triaged by a combination of lower tier security operators and
automated rules that combine events into alerts [45]. High
priority alerts are then escalated to senior security operators
who investigate each alert, and, depending on the threat and
impact, take necessary actions [28]. Despite these filtering
steps, security operators still have to manually deal with a
large number of events and alerts on a daily basis.

The workload of security operators is determined by the
quality of the security event detectors. These security systems
are expected to flag any suspicious activity to ensure that most
malicious activity is detected. However, not all suspicious
events are malicious, leading to an overwhelming number of
unnecessary alerts for security operators to investigate. To put
this into perspective, a 2019 survey by Cisco [11] reported
that 41% of 3,540 organizations examined receive over 10,000
alerts per day. Of those alerts, only 50.7% were investigated
due to the limited capacity of the security operators, and only
24.1% of investigated alerts were considered an actual attack.

1https://suricata-ids.org
2https://www.snort.org

A similar 2018 report by Demisto found that companies
deal with an average of 174,000 alerts per week, of which
only 12,000 were investigated [13]. Moreover, state-of-the-art
academic work by Symantec Research Labs uses real-world
datasets with an average of 170 security events per device per
day [36], which shows that even for a few hundred machines,
the number of security events easily becomes overwhelming.
This illustrates the vast number of alerts that security operators
have to deal with. This high workload leads to a condition
called alert fatigue, where security operators fail to respond to
alerts because of the sheer volume they receive each day [22].

In the literature, several works have been proposed to tackle
alert fatigue. These works either focus on 1) reducing the
number of generated security events by improving individual
detectors [9], [24] or 2) prioritizing alerts, a method called
alert triaging [2], [3], [22]. While reducing the number of
security events per detector is useful, it might result in missing
a significant portion of the alerts for malicious events. In addi-
tion, such a solution needs to be optimized for each detector.
As organizations typically use different detectors from various
vendors, optimizing at a detector level becomes infeasible.

In contrast, alert triaging shows promising results in reduc-
ing the workload of security operators for a more broad range
of detectors. Unfortunately, existing triaging approaches still
exhibit several limitations. Some works focus on prioritizing
individual alerts based on threat indicators associated with
each alert [2], [3]. In this case, complex attacks containing
many relatively innocent security events remain undetected,
while single high impact events are emphasized, despite often
being produced by benign processes. More fundamentally,
these approaches fail to analyze alerts in combination with
other (suspicious) activities in the infrastructure. After all,
threat detectors are specialized in finding suspicious behaviors,
such as large file uploads or policy violations. However, we
argue that suspicious behaviors can, sometimes, be legitimate
when viewed together with other activity. To illustrate, con-
sider a scenario where an attacker sends a phishing email
containing a link to a website that downloads an executable
infecting the machine with a packed botnet malware sample.
Security detectors may raise security events for 1) a link to
a website with a recently registered domain [43]; 2) a data
download using a self-signed certificate [41]; 3) a packed ex-
ecutable [1]; and 4) beaconing activity [26]. When these events
occur together, they raise suspicion; however, each individual
security event could be benign. After all, these events may be
caused by 1) a startup launching its new website; 2) a devel-
opment webserver where the TLS certificate has not yet been
properly initialized; 3) software packed for compression or to
protect intellectual property [1]; 4) applications periodically
checking servers for updates. It is only when we look at this

https://suricata-ids.org
https://www.snort.org

Fig. 1. DEEPCASE setup. 1. Agents or probes summarize activity
from monitored devices and send it to a network security monitor (NSM)
or intrusion detection system (IDS). 2. These NSMs or IDSs contain
several detectors that identify security-relevant events (e.g., Repeated
SSH login attempt or Observed signature for malware X).
Normally, a security operator would investigate and deal with these events.
Our work proposes DEEPCASE as an intermediate step. Here, each event is
analyzed in a context, defined by the preceding events from the same device.
Together they form an event sequence. Our goal is to correlate relevant events
within each sequence and present them to the security operator as one alert.

sequence of events as a whole that we can be confident of an
attack. Therefore, techniques prioritizing individual alerts still
leave the contextual analysis of alerts up to security operators.

We propose to reduce the workload of security operators
by automating the process of analyzing security events from
NSM and IDS systems in combination with other triggered
events. Figure 1 gives an overview of this approach. The core
idea is that besides examining the security event itself, we also
analyze the security events preceding it. We call these preced-
ing security events the context in which an event is triggered.
We refer to an event in combination with its context as an
event sequence. Analyzing the context helps us understand
what activity triggered the events. This allows us to better
distinguish between an event that is benign (e.g., a self-signed
TLS certificate presented by a development server) and a very
similar, yet malicious, event in the context of an attack. More-
over, it allows us to present fewer and more detailed alerts to
security operators, which drastically reduces their workload.

Using additional information to assess security events is
not entirely new. SOC teams frequently use SIEM (security
information and event management) products that include
hand-crafted expert rules to combine events into alerts
for known attack strategies [12]. Other systems, such as
Zeek [33], even offer programmable interfaces for security
operators to create these rules themselves. However, these
approaches require expert knowledge and cover only event
sequences that have been manually defined. Academic work,
such as NoDoze [22] and later works [21], [23], attempts
to automate this process by leveraging process-level data to
reconstruct the activity that triggered an alert. However, this
approach relies on process-level information only available in
host-based detection systems. In contrast, our work focuses
on placing events into context by analyzing only preceding
security events. This allows our approach to have wider
application, as many detectors (e.g., network-level detectors)
or even entire environments (e.g., bring-your-own-device
settings) do not have access to process-level information.

Contextual analysis of security events is practical only if
it is able to handle 1) complex relations within sequences of
events, triggered by 2) evolving threats, while 3) remaining
explainable to security operators. Therefore, this work
specifically addresses these three challenges, which make
contextual analysis non-trivial.
Complex relations. Malicious activity often involves several

steps that can lead to a sequence of events [31]. Conversely,
benign applications may accidentally trigger security event
detectors leading to false alerts. Since modern devices often
run multiple benign applications simultaneously, the actual
malicious behavior can easily get lost within this sequence
of events. Thus, contextual analysis must be able to identify
relevant context events from the complex event sequences
received at the SOC.
Evolving. Both the attacks and benign applications that trigger
security events evolve over time: benign applications get up-
dated, and adversaries develop novel malware and attack tech-
niques. Additionally, companies introduce new detectors or
replace old ones to keep up with new threats or gain more in-
sight into the suspicious activity in their IT infrastructure [15].
Ideally, a contextual analysis mechanism should be able to
learn new event sequences; and adapt its detection capabilities
for new attacks with minimal input from a security operator.
Explainable. Finally, reducing the workload of security
operators requires filtering alerts and their corresponding
events. When filtered incorrectly, we may miss attacks.
Therefore, contextual analysis should provide concrete
information as to why certain event sequences are discarded
whilst others are marked for further investigation.

To reduce the workload of security operators while tackling
all three challenges, we introduce DEEPCASE. Our approach
leverages a deep learning model designed to expose complex
relations between both new and previously observed event
sequences. These sequences are subsequently grouped based
on a similarity function, providing concrete information about
why various event sequences are treated the same. Now, the
operators need to inspect only a few security event sequences
within each group to determine if action should be taken,
which significantly reduces their workload. In summary, we
make the following contributions:
• We introduce a semi-supervised deep learning approach

for explaining and classifying security events in relation
to their context.

• We implement this approach in a prototype called
DEEPCASE, which is a deep learning system for
interpreting events within their context.

• We show that DEEPCASE is able to reduce the workload
of security operators by 90.53% on a real-world dataset
containing all security events of 20 international
organizations collected over a period of 5 months.

We make both our prototype of DEEPCASE and
implementations of state-of-the-art work used in our evaluation
available at https://github.com/Thijsvanede/DeepCASE.

II. SECURITY MODEL

We consider a set of machines and network endpoints that
are monitored by a network security monitor (NSM), such
as Zeek [33], or an intrusion detection system (IDS), such
as Suricata or SnortIDS. First, these systems collect and
summarize activities observed within the IT infrastructure
(e.g., HTTP Request from <SRC> to <DST> (URI:
/index.html)). When summarizing activities, these
systems often already handle application-layer protocols such
as SSH, HTTP, and FTP and are able to reconstruct transported
files. However, these activities have no notion of being benign,
malicious or suspicious, as they simply describe what happens

https://github.com/Thijsvanede/DeepCASE

within the infrastructure. On top of these activities, monitoring
solutions provide several detectors that detect suspicious
events, which are sent to a central SOC where a security opera-
tor can investigate the event. These detectors may be based on
signatures, policies, anomaly detection, or even customizable
rules. Examples include Malicious file download
(signature); Unusual JA3 fingerprint (anomaly);
or Self-signed TLS certificate on high port
(policy violation). Figure 1 gives an overview of this setup.

Our goal is to analyze all events sent to the SOC and select
which events are part of an attack and should be shown to
operators. Conversely, events unrelated to an attack should
be filtered. After all, a security event may be caused by
an adversary attacking the system or may be accidentally
triggered by a benign application running on the host. We
assume that detectors include information about each host
involved in an event, either by leveraging an installed agent
(host-based detection), or by deriving the host from the
IP address and the logs of a DHCP server (network-based
detection), a common assumption in enterprise networks [17].

DEEPCASE determines whether an event ei is part of an
attack given the security context [e0,...ei−1] for this event. The
context for event ei are the n most recent events that occur on
the same host as ei, at most t seconds before ei. If there are
fewer than n events, the context is simply a shorter sequence.

III. APPROACH

We propose DEEPCASE to reduce the workload of security
operators. Intuitively, our approach searches for correlations
within event sequences generated for a specific device. More
precisely, we are looking for correlations between events in
the context of an event ei and ei itself that indicate whether
ei was produced by malicious activity. Once found, we cluster
similar event sequences and present them to a security operator
who determines whether this combination of events poses a
threat to the IT infrastructure. DEEPCASE then learns this
decision and automatically applies it to similar event sequences
found in future event sequences. This semi-automatic approach
automatically handles known correlations such that security
operators can focus on new threats. Figure 2 shows the
overview of DEEPCASE. First, we take sequences of security
events gathered from all detectors, grouped per monitored
device in chronological order. Second, for each security event
the CONTEXT BUILDER searches for correlations within its
context, and captures those relations in what we call an atten-
tion vector. We note that events from a device may be trig-
gered by different processes or interactions, therefore, a naı̈ve
analysis of the context may not find relevant correlations. The
CONTEXT BUILDER uses a deep learning model along with
an attention mechanism to identify the correlation between
events and their context to generate this attention vector. Sub-
sequently, from the attention vector the CONTEXT BUILDER
computes the total attention for each contextual event. Third,
the INTERPRETER groups the sequences into clusters based on
the total attention for each distinct contextual event in a se-
quence. These clusters can be inspected by a security operator.
In manual mode, the security operator classifies each cluster
by sampling and inspecting the underlying decision factors
(which are provided by the attention mechanism). If the cluster
is classified as malicious, the operator can take necessary

action for all security sequences within the cluster and, at the
same time, the system learns this new cluster. This saves time,
as a security operator can assess groups of event sequences
rather than individual events. Conversely, when running in
semi-automatic mode, DEEPCASE compares attention vectors
with previously classified clusters and automatically warns the
security operator in case a sequence matches a known cluster.
By filtering events from the well-known clusters, a large part
of the security assessment can be automated.

A. Sequencing events
We first collect all security events generated by detectors

in the monitored IT infrastructure. These are then passed to
CONTEXT BUILDER, which analyzes chronological sequences
of events to identify relevant contextual events and uses them
to build attention vectors. To reduce the search space for
relevant contextual events, we take each event and create
a sliding window of n preceding events (in our case 10)
from the same device, which form the context. To remove
uncorrelated events, we limit the time difference between the
event and events in its context to t=86,400 seconds (1 day).

B. The CONTEXT BUILDER

The CONTEXT BUILDER identifies relevant contextual
events to build an attention vector. Here, relevance means that
our approach should identify events triggered by an attack
and discriminate them from events accidentally triggered by
benign applications or benign user behavior. To complicate
matters, as laid out in our three challenges, the CONTEXT
BUILDER should be able to deal with unpredictable, complex
relations within event sequences without resorting to a
black-box technique. In addition, our approach should be
easily updatable to deal with evolving threats and changes in
the monitored infrastructure.

To this end, we design a specific kind of recurrent neural
network that uses an attention mechanism [4]. Such an
attention mechanism is borrowed from the domain of natural
language processing (NLP). That domain uses attention to
focus a neural network on relevant parts of an input sequence
with respect to the desired output [7], [14], [42]. Our work
uses this attention mechanism to automatically detect which
events in the context [e0, ..., ei−1] are correlated with the
corresponding event ei in the sequence. Using attention has
an advantage over existing state-of-the-art works that use
neural networks to analyze sequences of security events [16],
[36], [37]: attention can be used to compare the relevance of
events in contextual security sequences, which we leverage
in our INTERPRETER3 (see Section III-C).

Figure 3 gives an overview of the network architecture of
the CONTEXT BUILDER. Normally, this architecture would
make a prediction of the expected event ei by looking at only
the context. However, CONTEXT BUILDER is not designed
to predict, as we already know the entire sequence of events
which occurred on each device. In fact, we train the CONTEXT
BUILDER as if it were to predict the event ei by looking at only
the contextual events. If it is indeed able to correctly predict
the event ei, we can use the attention vector to analyze which
parts of the context were relevant for this prediction. Using

3For a discussion regarding the use of attention as a means of explaining
the relevance of events within a sequence we refer the reader to Section VI-5.

Fig. 2. DEEPCASE overview of the contextual analysis. (A) DEEPCASE takes sequences of security events from each device as input. (B) Next, the
CONTEXT BUILDER identifies relevant contextual security events (represented by the dashed squares), builds an attention vector for each sequence, and uses
this vector to compute the correlation of each contextual event. (C) The INTERPRETER compares all correlated contextual events and groups them into similar
clusters. (D) A security operator analyses and labels the clusters instead of individual events, saving time. (E) Once a security operator labels clusters, similar
sequences (based on the combination of contextual events and attention vector) can be automatically classified by comparing them with known clusters.

Fig. 3. Overview of CONTEXT BUILDER’s neural network architecture.
(1) The CONTEXT BUILDER embeds contextual events S = [e0,e1, ...,en]
into embedded vectors [e′0,e

′
1,...,e

′
n]. These embeddings are used to generate

a context vector c0. (2) The attention decoder then takes this context
vector c0, together with optionally generated previous outputs ei−1, to
learn an attention vector. (3) The event decoder distributes this attention
over the embedded inputs [e′0, e

′
1, ..., e

′
n], which is used as input for the

INTERPRETER. The modified context that follows from this is then used to
predict a probability distribution of the event ei.

such an analysis, the CONTEXT BUILDER identifies contextual
events correlated with ei in the form of an attention vector.
When the CONTEXT BUILDER is unable to predict ei, we
fall back on the security operator and their existing tools to
perform the analysis. This approach uses what is known as
an Encoder-Decoder [8] architecture in combination with an
attention mechanism [4]4. At a high level, this means that the
encoder network analyzes all contextual events and transforms
them into a single vector known as the context vector. Next,
the attention decoder takes this context vector and transforms
it into an attention vector which specifies a weight (i.e.,
relevance) of each context event. Then, the event decoder
multiplies this weight with the encoded context to obtain
the total relevance for all contextual events. From here, the
decoder computes a probability distribution over all possible
next events. Finally, the system checks whether this “pre-
dicted” distribution matches the actual event ei, and passes the
total attention for each contextual event to the INTERPRETER.
Section III-C1 describes what happens if the this prediction is
incorrect. Our analysis is described in more detail below.

1) Encoder: First, the encoder takes contextual events
[e0,e1,...,en] as input, which in our case is fixed to n = 10
and is left-padded in case there are fewer than n context
events. We represent each contextual event as a vector using

4We discuss transformers as an attention mechanism in Section VI-8.

the embedding layer. Our work embeds the input using one-
hot encoding, but embeddings may even be learned by the
encoder itself [40]. Next, we use a recurrent layer to combine
all inputs into an abstract, internal representation called a
context vector, which represents the entire context as a single
fixed-length vector. Note that the intermediate outputs are dis-
carded, as we require only the final context vector for further
computation. The CONTEXT BUILDER uses a single layer of
Gated Recurrent Units (GRU) [8] to encode the input into a
128-dimensional context vector. Our empirical results showed
that a GRU and Long Short-Term Memory (LSTM) [25] have
similar performance, where the GRU is slightly faster.

2) Attention Decoder: Now that the input is encoded into
the context vector, the CONTEXT BUILDER decodes this
vector into an attention vector [α0,αk,...,αn]. These αk values
represent the degree to which each corresponding context
event ek contains information regarding the security event ei
in the sequence, normalized to 1. The total attention values
for each contextual event are processed by the INTERPRETER
to cluster similar event sequences. In our implementation, the
attention decoder takes the context vector as input, passes
it through a series of linear layers, and applies a softmax
function to normalize the output. Such an architecture allows
us to create an attention vector for the event ei.

To describe the context of a particular event ei, we associate
each contextual event with its corresponding attention value.
To this end, we multiply the attention vector α with the
one-hot encoded context sequence S′=[e′0,e

′
1,...,e

′
n], i.e., the

matrix multiplication in Figure 3. This results in an n×m
matrix of events combined with their attention where n is the
size of the context sequence and m is the size of an encoded
event. To capture the events in a single vector, we sum all
n rows to produce an m-dimensional vector describing the
context. Recall that the attention values are normalized to
1. Hence, intuitively, this is equivalent to simply summing
attention values for each contextual event in case we observe
an event multiple times in the context.

3) Event Decoder: The attention decoder outputs the
attention vector which, once combined with the contextual
events, the INTERPRETER will later interpret and compare
with the vectors of other event sequences. However, CONTEXT
BUILDER must learn how to decode the context vector into
an attention vector. The idea behind this learning process is
simple: assuming the attention vector gives relevant context
events a higher score than irrelevant events, a neural network
must be able to predict the following event ei given the
context events weighed by the attention vector. Therefore, if

we train the neural network of CONTEXT BUILDER to predict
event ei, we will automatically learn how to assign attention
to each contextual event. To this end, the event decoder takes
the embedded context events and weighs them by performing
an element-wise multiplication with the attention vector. Here
an attention value of 0 for a context event means that it is
ignored in the event decoder, and a value of 1 means that
it is the only event that will be considered. Finally, a neural
network predicts the probability distribution for the event
ei given this weighted context events. This is done with a
linear layer of dimension 128 with a Rectified Linear Unit
(ReLU) [20] activation function and softmax function to
transform the output into a probability distribution.
Processing event sequences. Before a neural network can
be used for prediction tasks, such as predicting the events
from their preceding context events, the network should be
trained. Hence, we should show the network an event in
combination with its context. In our approach, however, it
is important to recall that we are not actually interested in
predicting the event, as this is already known to us. Instead,
we are interested in the attention vector used to make this
prediction possible. This means that we can simply train the
CONTEXT BUILDER with the known context as input and
the known event as a prediction target. After training the
CONTEXT BUILDER with multiple epochs of these inputs, we
can use the same contextual events used for training to find
their corresponding attention vectors. This makes generation
of attention from event sequences an unsupervised process.

In order to train the network, we need to compare its gen-
erated output ei to a desired output êi through a loss function
L(ei, êi). Recall that ei is a probability distribution over all
possible events. Therefore, ideally, DEEPCASE should output
a probability of 1 for the actual event and 0 for all other
events. This can be achieved by using the mean squared error
as a loss function, or negative log likelihood when working
with log probabilities. However, this incentivizes the network
to produce outputs with high probabilities, even when it is
not sure that the prediction is correct. To counter this effect,
we use label smoothing [39]. Here the desired output êi is a
vector where the actual event has a probability value of 1−δ
and the remaining probability δ is scattered over the other
events using their frequency distribution. In this work we use
an empirically determined δ=0.1 (Section D). As ei and êi
are now modeled as distributions, we use the Kullback-Leibler
divergence [29] as a loss function for the backpropagation.

In short, the CONTEXT BUILDER exploits relations
(correlations) between an event and its context to generate
an attention vector that assigns a weight to each event in
the context. Due to its unsupervised nature, it can easily be
updated with new sequences of events [15], making it possible
to deal with evolving attack patterns and IT infrastructures.
Most importantly, generating the attention values for each
contextual event provides the INTERPRETER with concrete
information about which parts of the context are relevant to
the corresponding event.

C. The INTERPRETER

After the CONTEXT BUILDER has computed the attention
for each contextual event in the sequence, the INTERPRETER
uses this information to compare different sequences. The idea

is that event sequences with similar attention values for the
same events can be treated the same way by security operators.

1) Attention query: At this point we should recall that
interpreting the attention vector makes sense only if the correct
event was predicted. After all, if the CONTEXT BUILDER
predicts an incorrect event, interpreting attention would
lead to the wrong conclusion. This means that for incorrect
predictions, we would fall back on manual inspection, limiting
the workload reduction for the security operator. To minimize
this effect, we introduce a technique called attention querying.

Intuitively, this technique does not ask the CONTEXT
BUILDER to predict the security event given its context, but
instead asks “given the actual security event that occurred,
which attention distribution would have resulted in the correct
prediction?” We achieve this attention query by temporarily
freezing the weights of the event decoder and instead making
the attention vector variable. Then we use backpropagation
to adjust the attention vector such that the event decoder
would result in the highest prediction for the observed event.
Appendix A provides a detailed description of this process
and Appendix B gives a concrete example where the attention
showed improved results compared to naive clustering without
any use of attention.

It is still possible that even after the attention query,
the CONTEXT BUILDER was not able to correctly predict
the observed event. We check whether this is the case by
comparing the predicted probability of ei with a confidence
threshold τconfidence (see parameter selection in Appendix D-C).
If the attention query achieved a sufficient confidence level,
we take newly found attention as described in Section III-B2.
Conversely, if the attention query was not able to pass the con-
fidence threshold, DEEPCASE cannot deal with it and passes
the sequence to a security operator for manual inspection.

2) Clusters: Now that we have modeled each sequence
by combining the attention vector with their corresponding
events, we can compare and group sequences with similar
vectors into a cluster. To this end, we define a distance
function between the vectors of total attention per events.
Such a function allows us to search for events that occurred
in a similar context. We consider two vectors similar if the
distance function d(x,y) is smaller or equal to the threshold
τsimilarity. The INTERPRETER defines its distance function in
terms of the L1 distance as given in Equation 1. The L1

distance is preferable to Euclidean distance because it captures
more subtle differences in high-dimensional data. In this
work, the dimensionality grows with the number of different
possible events m. Hence, the L1 distance gives better results.

d(x,y)=‖x−y‖1=
m∑
i=1

|xi−yi| (1)

Using this distance function, the INTERPRETER clusters
event sequences using DBSCAN [18]. Here we define the
maximum distance d(x,y) between points to be considered
part of the same cluster as ε=0.1 (Section D-C). Furthermore,
we define the minimum required size of each cluster as 5
(Section D-C). This means that clusters containing fewer
datapoints are passed directly to the security operator. Next,
each cluster is either passed to a security operator for either
manual analysis (Section III-D) or processed further by
DEEPCASE using semi-automatic analysis (Section III-E).

D. Manual analysis

At this point, each cluster represents a set of sequences of
events that share similar contexts. However, we do not yet
know whether all sequences within a cluster should be con-
sidered benign or malicious, or whether a cluster contains both
benign and malicious event sequences. To solve this problem,
we present each cluster of similar event sequences to an opera-
tor who decides how it should be treated. Appendix F provides
some examples of event clusters generated by DEEPCASE.

1) Cluster sampling: In the ideal case, all sequences
within a cluster should be so similar that analyzing a single
sequence is enough to determine whether all sequences are
benign or malicious. However, no system is perfect and
even an operator may be uncertain about certain events and
their context. Therefore, we propose that security operators
sample (without replacement) several event sequences from
each cluster and analyze them as if they were normal alerts.
Next, the operator classifies each sequence into benign vs
malicious, or using different classification systems such as
risk levels, e.g., LOW, MEDIUM or HIGH. When all sampled
sequences fall into the same category and the sample size
is large enough, we can confidently treat all sequences in a
cluster the same way. Furthermore this classification can be
stored into a database that we can use to semi-automatically
classify future event sequences (Section III-E). Conversely,
if sampled sequences from the same cluster fall into different
categories, we know that this cluster is ambiguous and will
need to be inspected completely by a human operator. By
sampling and analyzing a small number of sequences from
large clusters, the workload of security operators is drastically
reduced. In Section V-B we evaluate the workload reduction
and performance of this sampling process.

2) Outliers: We recall that certain event sequences are
passed to a security operator because they cannot be handled
by DEEPCASE. This happens in two situations.

In the first case, the CONTEXT BUILDER did not pass
the τconfidence threshold. Here we were unable to identify
relevant contextual events and our approach does not provide
additional benefit. Instead, analysis should be performed by
the security operator, falling back on existing analysis tools.
In case of new and unknown threats, it is only encouraged
that security operators manually inspect them to ensure that
no malicious activity slips under the radar. Moreover, the
CONTEXT BUILDER is constantly updated with these new
event sequences. This means that if they occur more regularly,
the CONTEXT BUILDER eventually becomes more confident
in identifying relevant contextual events in these previously
unknown sequences. Therefore, over time, the number of
unidentifiable event sequences will likely decrease.

In the second case, the INTERPRETER did not find enough
similar sequences and manual inspection is similar to sampling
from very small clusters. However, in these cases there are
only a few items to sample and the resulting classification can-
not be generalized to other clusters. The INTERPRETER may
still store these smaller clusters such that when future similar
sequences appear, the cluster can still be built incrementally.
Moreover, manual analysis can still be facilitated by showing
the operator clusters that are outside the similarity threshold
τsimilarity, but still have a close similarity to the scrutinized

cluster. This provides security operators with more information
regarding classification of somewhat-related clusters.

E. Semi-automatic analysis
Once security operators have classified clusters, the IN-

TERPRETER can automatically compare the vectors of total
attention per event of a new sequence (generated by the CON-
TEXT BUILDER) to these known clusters. If the new sequence
matches a known benign cluster, we can automatically discard
it without intervention of a human operator. Conversely, when
a new sequence matches a known malicious cluster, DEEP-
CASE informs the security operator to take action5.

However, as we have seen in the INTERPRETER
(Section III-C) and manual analysis (Section III-D),
some sequences do not match any cluster. This can either
be because 1) CONTEXT BUILDER was unable to achieve a
high-enough confidence level for the analyzed event sequence,
or 2) because there are not enough other similar sequences
to form a cluster. In this case, the semi-automatic analysis
notifies the security operator, who evaluates the sequence as
described in Section III-D2.

IV. DATASET

For our evaluations we use both a synthetic dataset for
the reproduction of our results, as well as a large real-world
dataset to evaluate the performance of DEEPCASE in practice.
LASTLINE dataset. The real-world LASTLINE dataset consists
of 20 international organizations that use 395 detectors to
monitor 388K devices6. This resulted in 10.5M security events
for 291 unique types of security events7 collected over a
5-month period. Events include policy violations (e.g., use
of deprecated samba versions, remote desktop protocols, and
the Tor browser), signature hits (e.g., Mirai, Ursnif, and
Zeus) as well as heuristics on suspicious and malicious
activity (e.g., beaconing activity, SQL injection, Shellshock
Exploit Attempts and various CVEs). Of the 10.5M security
events, a triaging system selected 2.7M events that were likely
to be part of an attack. Of these 2.7M likely malicious events,
45.1K security events were confirmed to be part of an attack
by security operators, and labeled as ATTACKS. These attacks
include known malware, such as the XMRig crypto miner, or
remote access Trojans, such as NanoCore. Another 46.4K
events were classified as a HIGH security risk (e.g., successful
web attacks and exploitation of known vulnerabilities such as
CVE-2019-19781); 184.9K events classified as a MEDIUM
risk (e.g., attempted binary downloads or less exploited vul-
nerabilities such as CVE-2020-0601) and 2.4M events as
LOW risk (e.g., the use of BitTorrent or Gaming Clients). The
remaining 7.8M events were not related to security risks, but
were used to give security operators additional information
about device activity, and are therefore labeled as INFO.
HDFS dataset. We also evaluate DEEPCASE on the HDFS
dataset [44] used in the evaluation of the related security log

5In some cases it may even be possible to fully automate the response
for known malicious clusters, we discuss this use of DEEPCASE as basis
for SOAR systems in Section VI-3.

6These include devices in a bring-your-own-device setting which were
only monitored for a small part of the 5 months. Therefore, the average
number of 10.5M/388K = 27.06 events generated per device is significantly
lower than the earlier reported 170 events per device per day.

7The full list is available at https://github.com/Thijsvanede/DeepCASE

https://github.com/Thijsvanede/DeepCASE

analysis tool DeepLog [16]. This dataset consists of 11.2M
system log entries generated by over 200 Amazon EC2 nodes.
The dataset was labeled by experts into normal and anomalous
events, where 2.9% of events were labeled as anomalous. Un-
fortunately, this dataset lacks metadata about the risk level of
security events and is therefore evaluated in terms of workload
reduction, but not in terms of accuracy. Despite containing
less information, we use the HDFS dataset to provide a
reproducible comparison with state-of-the-art systems.

V. EVALUATION

We implemented DEEPCASE in Python and compare its
performance in workload reduction and performance metrics
(e.g., precision, recall, F1-score) with existing workload
reduction techniques. Table I gives an overview of the
average performance achieved by all compared methods.
Additionally, we evaluate how well DEEPCASE deals with
the three challenges proposed in the introduction, discuss its
robustness against evasion strategies, and perform a runtime
analysis to show that DEEPCASE is able to handle real-world
events generated by major organizations.

A. Setup
To evaluate DEEPCASE in a realistic scenario, we split our

dataset in a part used to perform manual mode analysis and a
part for the semi-automatic mode. The manual mode always
precedes the semi-automatic mode, and, therefore, we use
the first month of data (2M events) in the LASTLINE dataset
to evaluate our manual mode and the subsequent months to
evaluate the semi-automatic mode. The HDFS dataset was
split by the original work into training and test sets, which we
use in manual mode and semi-automatic mode, respectively.
We run all our experiments using the same parameters, which
we obtained during a parameter optimization experiment
(Appendix D). Unless otherwise specified, we report the
average results of 10 runs for each experiment. We followed
the three research guidelines for evaluating machine learning-
based security systems as detailed in TESSERACT [34]:
• Our experiments have a temporal training consistency,

meaning that data for our manual evaluation comes
strictly before the data used in semi-automatic mode.

• Data should be collected over a consistent time window,
i.e., there should be no major gaps between collection
of data. Our LASTLINE dataset was collected over a
continuous period of 5 months ensuring time consistency.

• There is a realistic malware-to-goodware ratio in testing.
This ratio follows from the use of a real-world dataset
consisting of events collected from 20 organizations.

During the manual mode, the CONTEXT BUILDER learns
to produce attention vectors by training the neural network
for 100 epochs and extracting the final attention vector (see
Section III-D for more details). In semi-automatic mode,
this training is only performed when updating the CONTEXT
BUILDER (Section V-C2).

B. Workload reduction
In this section we compare the workload reduction of our

approach with existing techniques used by real-world SIEM
systems. These techniques include alert throttling and expert
rules, as well as more naive, automated methods such as

n-gram analysis and our own clustering approach without
use of the CONTEXT BUILDER. For each technique, we
measure the workload reduction in terms of the percentage of
events covered by the raised alerts (coverage), the number of
produced alerts compared to these covered events (reduction),
and the overall reduction in inspected events (alerts + events
not covered) compared to the total number of events analyzed.
Furthermore, we discuss the performance over covered events
in terms of precision, recall, F1-score, accuracy and percentage
of events for which the algorithm underestimated the risk level.
Table I shows the results of all experiments. The remainder
of this section discusses how each result was obtained.

DEEPCASE- manual mode

When used in practice, DEEPCASE starts without any
knowledge of event sequences. At this stage, DEEPCASE runs
in manual analysis mode (Section III-D), where all sequences
are processed to produce clusters of event sequences (similar
events occurring within a similar context). These clusters are
then shown to the security operator, who determines if the
sequences in each cluster are benign or malicious. In this
setting, the workload is reduced because an operator does
not have to investigate each individual event; instead, only a
small number of samples from each cluster, and the sequences
that could not be handled by DEEPCASE. We simulated this
manual mode scenario using the first month of the LASTLINE
events and the training data of the HDFS dataset.

1) Coverage: Table I shows that for the LASTLINE dataset,
94.46% of the 2M training event sequences could be grouped
into 1,642 clusters. The remaining 5.54% (110.9K) event
sequences could not be turned into clusters, either because
DEEPCASE was not confident enough (95.70%, 106.1K
cases) or because there were fewer than 5 other sequences
with a similar context (4.30%, 4.8K cases). These remaining
sequences can be manually inspected or filtered through
existing triage systems, which are complementary to our
approach. We performed the same evaluation on the HDFS
dataset (see Appendix E). On this dataset, we found similar
results where DEEPCASE covers 96.39% of sequences with
393 clusters, leading to an overall reduction of 92.26%.

2) Cluster classification: Each cluster contains security
events with a similar context. However, this grouping would
be useful for the security operator only if each sequence
within a cluster is treated the same way. If a cluster contained
both benign and malicious samples, or different risk levels,
our approach would have a limited benefit. Thus, we
scrutinized all event sequences produced by DEEPCASE
to evaluate to what extent the sequences in each cluster
have the same risk classification. We recall from Section IV
that the LASTLINE dataset is labeled into 5 risk categories:
INFO, LOW, MEDIUM, HIGH and ATTACK. Table II gives an
overview of the classification of the clusters. Each risk level
details the number of clusters that contain only contextual
sequences of that single risk level as well as some statistics
about the number of sequences per cluster. Not all clusters
contain security sequences of a single risk level. Therefore,
we also have a SUSPICIOUS category which captures the
clusters containing multiple risk levels. As we can see from
Table II, 1,404 of the 1,642 clusters contain sequences of
only a single risk level, corresponding to 67.05% of clustered

TABLE I
WORKLOAD REDUCTION. AVERAGE WORKLOAD REDUCTION OF DEEPCASE COMPARED WITH EXISTING WORKLOAD REDUCTION METHODS. WE
HIGHLIGHT THE Overall AND Underest. COLUMNS. Overall SHOWS THE TOTAL WORKLOAD REDUCTION OF SECURITY OPERATORS. Underest. SHOWS HOW
MANY OF THE COVERED EVENTS ARE ASSIGNED A RISK LEVEL LOWER THAN THEIR TRUE RISK LEVEL, WHICH POTENTIALLY LEADS TO MISSED ATTACKS.

Workload reduction Performance over covered events
Method AlertsA ReductionB CoverageC OverallD Precision Recall F1-score Accuracy Underest.

M
an

ua
l DEEPCASE 16,420 99.13% 94.46% 93.64% N/A N/A N/A N/A N/A

Cluster N-gram 35,640 98.12% 94.62% 92.83% N/A N/A N/A N/A N/A
Cluster DEEPCASE 45,400 97.68% 97.96% 95.69% N/A N/A N/A N/A N/A

Se
m

i-
au

to
m

at
ic

DEEPCASE 51,800 99.19% 91.27% 90.53% 96.39% 91.47% 93.41% 91.47% <0.01%

fully-automatic part N/A 100.00% 86.72% 86.72% 96.39% 91.47% 93.41% 91.47% <0.01%

manual part 51,800 83.83% 34.29% 28.74% N/A N/A N/A N/A N/A
Alert throttling (15 min) 3,532,849 49.77% 100.00% 49.77% 98.08% 98.04% 98.04% 98.04% 0.79%

Alert throttling (30 min) 2,889,607 58.92% 100.00% 58.92% 97.92% 97.90% 97.90% 97.90% 0.97%

Alert throttling (60 min) 2,332,467 66.84% 100.00% 66.84% 97.83% 97.83% 97.83% 97.83% 1.11%

Alert throttling (1 day) 855,798 87.83% 100.00% 87.83% 97.47% 97.49% 97.49% 97.47% 1.34%

Rules AlienVaultE 421,693 83.78% 36.97% 30.97% 99.64% 99.63% 99.63% 99.63% 0.16%

Rules LASTLINE F 299,246 89.49% 27.02% 24.18% 100.00%F 100.00%F 100.00%F 100.00%F 0.00%F

Rules Sigma/ZeekE 126,147 92.87% 25.14% 23.35% 99.55% 99.51% 99.52% 99.51% 0.17%

Cluster N-gram N/A 100.00% 75.70% 75.70% 96.11% 94.00% 94.59% 94.00% 0.01%

Cluster DEEPCASE N/A 100.00% 80.59% 80.59% 95.77% 91.25% 92.80% 91.25% 0.01%

A Number of alerts sent to security operators. For DEEPCASE and cluster, this is based on 10 sequences per cluster. Formulas
B Computed as the fraction between alerts and covered events (see Formulas). B 1− Alerts

Covered events
C Percentage of events covered by alerts (see Formulas).
D Total reduction, alerts + uncovered events compared to total alerts (see Formulas). C Covered events

Total events
E Based on the event translations provided at https://github.com/Thijsvanede/DeepCASE.
F These rules were used in creating the ground truth (selected events were always shown to analysts) and may

therefore give an overly optimistic performance.
D 1− Alerts+Uncovered events

Total events

TABLE II
CLUSTERS - MANUAL MODE. CLUSTERS PER RISK LEVEL. SUSPICIOUS
CLUSTERS CONTAIN CONTEXT SEQUENCES WITH MULTIPLE RISK LEVELS.

Sequences

Risk level Clusters Total Average Min Max σ (SD)

INFO 1,115 1.216M 1090.3 5 583.9K 19.2K
LOW 221 41.8K 189.4 5 5,557 612.9
MEDIUM 18 568 31.6 5 235 55.5
HIGH 17 1989 117.0 6 1,107 270.6
ATTACK 33 1391 42.2 5 402 77.1
SUSPICIOUS 238 619.8K 2604.4 5 280.1K 20.2K

Total 1,642 1.881M 1145.7 5 583.9K 17.6K

sequences. For clusters containing two adjacent risk levels
(e.g., LOW and MEDIUM or HIGH and ATTACK), we find
1,527 of the 1,642 cluster, corresponding to 98.56% of all
clustered sequences. Additionally, the maximum cluster sizes
and standard deviation values are large. This is because there
are many smaller clusters and only a few large ones, i.e.,
clusters are skewed toward the lower end. Appendix G gives
an overview of the cluster size distribution. To measure the
extent to which clustered samples belong to the same class - or
in our case risk level - we use the conventional homogeneity
score [35]. This score measures the decrease in entropy of a
sample class when the cluster is known. The homogeneity is
0 if all clusters contain multiple different risk levels and 1 for
the ideal case where all clusters contain only samples of the
same risk level. Our clusters show a high quality grouping of
sequences of the same risk with a homogeneity score of 0.98.

3) Sampling: In the real-world scenario, when a cluster is
presented to the security operator, they do not know whether
a cluster contains only sequences of a single risk level or
multiple risk levels. This is important information as the

operator should be able to rely on DEEPCASE to group threats
with a similar level of risk in the same cluster. During manual
mode, the risk level of each cluster must be determined by the
operator. To this end, we suggest that the operator samples
several event sequences to determine the cluster’s risk level.
In the ideal case where each cluster has a one-to-one mapping
with the risk levels, a security operator would only need to
sample a single event sequence per cluster. However, as we
have seen in Section V-B2, this is not the case. Nevertheless,
we can measure the number of investigated samples required
for an arbitrary confidence in the risk level of a cluster.

A SUSPICIOUS cluster contains contextual sequences of
multiple risk levels. From Table II we found that 14.5% of
clusters are SUSPICIOUS. Given the sequences within a
cluster, we can compute the probability of identifying a cluster
as SUSPICIOUS. We define this as the probability of drawing
event sequences of at least two different risk levels, i.e., 1 mi-
nus the probability of drawing sequences of only a single risk
level. Equation 2 gives the probability of detecting a suspicious
cluster when sampling k different security sequences. Here N
is the total number of event sequences within the cluster, C is
the set of event sequences from all risk levels and c specifies
the set of sequences for each risk level. Note that we model this
as sampling without replacement as a security operator will
not choose two of the same event sequences to classify. This
probability will always be 0 for non-SUSPICIOUS clusters.

P (suspicious|k)=1−
∑
c∈C

(|c|
k

)(
N
k

) (2)

To adopt a conservative approach, a security operator can
label a cluster by the highest risk level they have identified
from sampling. This way, DEEPCASE will miss fewer
security threats at the cost of a slightly larger number of event

https://github.com/Thijsvanede/DeepCASE

5 10 15 20
0

0.2

0.4

0.6

0.8

1

sampled event sequences k

Pr
ob

ab
ili

ty

SUSPICIOUS
Highest risk
Conservative

Fig. 4. Probability of correctly identifying SUSPICIOUS clusters.
Shows 1) the average probability of identifying SUSPICIOUS clusters
(); 2) the average probability of finding the highest risk event sequence
(); and 3) the probability of detecting a cluster as SUSPICIOUS, or
if not SUSPICIOUS, labeling it as the highest risk sequence (), i.e. a
conservative clustering approach.

sequences that an operator should investigate. Equation 3
gives the probability of sampling at least one event sequence
of the highest risk level given a SUSPICIOUS cluster. Here,
|C\h| is the number of event sequences from each risk level
except the highest risk level h.

P (highest risk|k)=1−
(|C\h|

k

)(
N
k

) (3)

From Figure 4, we find that by sampling 10 samples per
cluster, the conservative approach gives a 84.52% confidence
for labeling SUSPICIOUS clusters. If a higher confidence
is required for the conservative approach, we found that
inspecting 95 samples gives a confidence of 95% and
inspecting 262 samples gives 99% confidence. However,
as only 14.5% of clusters are SUSPICIOUS, inspecting
10 samples per cluster corresponds to a 97.76% overall
confidence rating for all clusters.

4) Workload reduction: In short, when running
DEEPCASE on the LASTLINE dataset, inspecting 16.4K (10
sequences for 1,642 clusters) event sequences is enough to
cover 94.46% (Section V-B1) of all security events with a
clustering confidence of 97.76%. To cover 100%, i.e., also
cover all outliers not handled by DEEPCASE, an operator
should inspect 127.3K (16.4K clustered + 110.8K outliers)
out of 2M events. This reduces the total workload of security
operators by 93.64%. For the HDFS dataset, this reduction is
slightly smaller, reducing the workload by 92.26%.

DEEPCASE- semi-automatic mode
After a security operator labeled clusters in the manual

mode, DEEPCASE can be run in semi-automatic mode.
During this phase, upcoming sequences are compared against
labeled clusters. In case the vectors of total attention per
event match, the sequence of events is automatically labeled
according to the matching cluster. Depending on the policy of
an organization, event sequences labeled higher than a given
risk level are escalated to the security operator who can then
remove the threat. If the event sequence is found to be benign,
it is filtered and not shown to the security operator. Some
vectors not match any of the known clusters, and, as a result,
they will either form new clusters or are outliers that will
be passed to the security operator for manual inspection. In

those cases, the security operator will deal with the sequences
as if operating in manual mode, as described in Section III-D.

Table I shows the performance of DEEPCASE on the
LASTLINE dataset running in semi-automatic mode after
operating for one month in manual mode. Here, we see that
86.72% of all event sequences match a known cluster, and
can be automatically classified. The remaining 13.28% of
event sequences is processed in manual mode. From Table I
we see that 34.29% of these non-matching sequences formed
new clusters. After this manual step, 8.73% of all sequences
could not be clustered, either because they did not pass
the τconfidence threshold (97.91% of cases) or because there
were fewer than 5 samples in a cluster (2.09% of cases). In
addition, the automatic classification of risk levels gives us
a reasonable accuracy and F1-score of 91.47% and 93.41%,
respectively. However, we must be careful with such numbers,
as misclassifying an event sequence with a lower risk means
missing attacks. Conversely, misclassifying event sequences
as a higher risk is less problematic, and would only give
the security operator more manual work. Despite our goal to
reduce the workload of security operators, we rather overesti-
mate the risk level at the cost of a smaller workload reduction
than miss attacks. The confusion matrix of Table III shows
that the majority of incorrectly labeled cases overestimate
the risk level. In fact, DEEPCASE underestimates only 47
sequences, which is less than 0.001% of cases.

To understand why DEEPCASE underestimates 47 of its
semi-automatic predictions, we look at some underestimated
cases. Of these underestimates, 3 LOW and 35 MEDIUM
risks were classified as INFO, 4 HIGH risks were classified
as MEDIUM and 8 ATTACK levels as HIGH risks. The
sequences misclassified as INFO are the most undesirable, as
these will be ignored altogether by analysts. These sequences
were part of 4 different clusters: notably the first detection
of the Bladabindi backdoor without any prior events
was misclassified as INFO as well as several unsuccessful
web-application attacks. However, as detections are
often only a single step of an attack, we investigated whether
all parts of the attack misclassified. Here we found that for
all ATTACKS misclassified as INFO, at least one earlier
or later step of the same attack was classified as ATTACK.
Other underestimated predictions were less severe and are
still shown to analysts, e.g., when a HIGH risk was predicted
to be MEDIUM. In these cases, the incorrect classification is
mostly due to similar event sequences observed for different
machines. Here the sequences for clusters analyzed in manual
mode occurred on machines that were not of vital importance
for business continuity. Section VI-4 explores the adjustment
of risk level depending on the importance of machines.

State-of-the-art alert reduction techniques

Instead of raising an alert for each event, many SIEM
tools provide options to throttle events as well as options for
defining expert rules that aggregate sequences of events into
an individual alert. Here, we compare the performance of both
methods from state-of-the-art tools with that of DEEPCASE.

1) Alert throttling: With alert throttling, if an event is
triggered multiple times over a given period, only a single
alert is shown to an operator, usually in an aggregated form.
E.g., suppose the same event X is raised 5 times within the

TABLE III
PERFORMANCE - SEMI-AUTOMATIC MODE. THE TOP ROW SHOWS
THE CLASSIFICATION PERFORMANCE AND COVERAGE OF SEMI-
AUTOMATIC ANALYSIS. THE BOTTOM SHOWS THE CONFUSION MATRIX OF
AUTOMATICALLY CLASSIFIED SAMPLES IN THE LASTLINE DATASET.

Confusion Predicted

matrix INFO LOW MEDIUM HIGH ATTACK

A
ct

ua
l

INFO 4896683 281528 90025 132381 165
LOW 3 663327 303 1 1
MEDIUM 32 0 3014 14806 788
HIGH 0 0 4 3419 23
ATTACK 0 0 0 8 12870

throttling period, the security operator will receive only a
single alert after the first event triggered. All subsequent
events X within the throttling period are added only as
additional information to the first generated alert. After the
throttling period passed, a new event will generate a new alert.

We run this throttling mechanism over our LASTLINE
dataset for various throttling periods ranging from 15 minutes
to 1 day. Table I shows the results for this experiment.

The disadvantage of such an approach is that an analyst
either has to wait the full throttling period to make a definitive
risk assessment of all events within an alert; or she has to
assess the risk without having received all events, which
potentially misses attacks. The performance metrics for alert
throttling show the results after assessing all throttled events
with the most common observed risk level.

2) Expert rules: Instead of alert throttling, companies often
have expert-crafted rules to combine multiple events into a
single alert. Sometimes this functionality is embedded into
NSM or IDS software. A notable example is Zeek [33], which
offers the Zeek Notice Framework, where analysts can write
rules that search through Zeek logs and get notified of matches.
Such rules can be based on specific sequences or combinations
of events related to known common attacks. Depending on
the rules, sequences of events that have only a partial match
will still be triggered, but often with a lower reliability level.

In this work, we compare the performance of DEEPCASE
using the LASTLINE dataset with expert rules from the
LASTLINE; 292 open source rules from AlienVault’s OSSIM8

that cover 82 different known attacks; and the open source
rules from Sigma9 that cover known attacks from various
resources such as the MITRE ATT&CK framework. Sigma
includes rules that specifically cover Zeek logs and thereby
gives a publically available alternative to Zeek Notices, which
are normally specifically written for an organization. As many
of the rules from Sigma and AlienVault’s OSSIM operate
on specific types of detection events, we manually created a
bidirectional mapping between all 591 different events used in
these rules and the types of events in our LASTLINE dataset10.
This allows us to directly apply the Sigma and OSSIM rules
to the events in the LASTLINE dataset and compare their
achieved alert reduction to the results from DEEPCASE. We
have been liberal with this mapping, meaning that any event
that could match those provided by AlienVault or Sigma is
counted as such. This results in an optimistic coverage of both

8https://cybersecurity.att.com/products/ossim
9https://github.com/SigmaHQ/sigma

10Mappings are available at https://github.com/Thijsvanede/DeepCASE

rulesets and it explains why the coverage of AlienVault is
higher than the coverage achieved by the LASTLINE ruleset.
We note that there are many other solutions that provide
rule-based detection such as Azure Sentinel 11 and Splunk 12.
For these solutions, we were unable to obtain publically
available rules, and thus could not perform a comparison.

For our evaluation, we count the number of alerts triggered
by these expert rules. One single alert consists of all events
of a machine (partially) matching one of the available rules.
Table I shows the results of the expert rules. Here, we see
that while the reduction for the covered events is similar
to DEEPCASE, the number of events that are covered is
significantly lower. Furthermore, the performance for all
events covered by the rulesets is near perfect, with metrics
being over 99.51%. This shows that expert rules are highly
effective for detecting threats, but still lack much of the
coverage that DEEPCASE provides. DEEPCASE tackles this
problem by automatically finding correlations between events,
thereby vastly increasing the coverage. Hence, DEEPCASE
shows much potential to be used in combination with
expert-rules for combining events into alerts.

Naive clustering

DEEPCASE’s CONTEXT BUILDER detects correlations
between an event and its context. To demonstrate why this
component is required, we perform an ablation study, i.e.,
we compare our full approach with a version of DEEPCASE
without the CONTEXT BUILDER. Additionally, we show the
performance increase of our clustering approach compared to
clustering on exact matches, i.e., N-grams.

1) N-grams: The most straightforward approach for
sequence prediction is to treat an event and its context as an
N-gram. Here we can store all N-grams in the training data,
together with their highest associated risk level and assign the
same risk level to N-grams in the test data if there is a match.

Table I shows the result for this experiment, where each
alert is equal to the number of stored N-grams. As with
DEEPCASE, we assume a security operator will check 10
sequences (N-grams) to determine its risk level. While this
approach does not underperform compared to DEEPCASE in
the manual use case, the semi-automatic use case shows that
N-grams do not generalize as well.

2) Clustering: Instead of using N-grams, we can approach
matching better using clustering as proposed by DEEPCASE,
without using the CONTEXT BUILDER. This scenario is
equivalent to DEEPCASE with CONTEXT BUILDER where
the attention value for each contextual event is 1

n .
Table I shows that the results for using only our clustering

approach slightly outperforms DEEPCASE in manual
mode. However, in semi-automatic mode, it still produces
twice the workload compared to DEEPCASE with the
CONTEXT BUILDER. Therefore, we conclude that the
CONTEXT BUILDER generalizes significantly more than naive
approaches. This results in DEEPCASE roughly halving
the workload of a security operator in semi-automatic mode
compared to naive clustering.

11https://azure.microsoft.com/en-us/services/azure-sentinel/
12https://www.splunk.com/

https://cybersecurity.att.com/products/ossim
https://github.com/SigmaHQ/sigma
https://github.com/Thijsvanede/DeepCASE
https://azure.microsoft.com/en-us/services/azure-sentinel/
https://www.splunk.com/

TABLE IV
PREDICTION RESULTS. SYSTEMS TRAINED ON FIRST 20% OF DATA AND
EVALUATED ON REMAINING 80% OF DATA. TIME SHOWS THE AVERAGE
AMOUNT OF TIME FOR 1 EPOCH OF TRAINING. BEST PERFORMANCE IS
HIGHLIGHTED IN BOLD.

System Precision Recall F1-score Accuracy Train time

H
D

FS

DeepLog 89.71% 89.34% 89.35% 89.34% 1.0 s
Tiresias 89.70% 87.63% 87.96% 87.63% 15.0 s
DEEPCASE 90.41% 90.64% 90.40% 90.64% 1.3 s

L
A

S
T

L
IN

E DeepLog 89.65% 90.40% 89.82% 90.40% 0:06.8 m
Tiresias 95.50% 96.21% 95.68% 96.21% 4:51.5 m
DEEPCASE 97.90% 98.06% 97.90% 98.06% 0:13.8 m

C. Challenges

This work addressed three challenges that make it difficult
to reduce the workload of security operators. Here, we evaluate
the extent to which our approach solves these challenges.

1) Complex relations: The CONTEXT BUILDER was
designed to find correlations between an event and its
context. To this end, it analyzes the preceding contextual
events and tries to predict what event is most likely to
occur next. To understand how well our approach deals with
such complex relations, we assess to what extent events are
correctly predicted from their context. This prediction based
on past security events is not novel, as it was introduced by
DeepLog [16] and later extended by Tiresias [36]. However,
both of these works focus purely on the prediction aspect,
and cannot be extended to perform the contextual analyses
proposed in this work. Therefore, to measure how well
DEEPCASE is able to deal with complex relations within
the data, we compare its prediction performance with the
two state-of-the-art systems DeepLog and Tiresias. We
implemented both systems as described in their respective
papers. While the original source code was not available,
upon contacting the authors we received helpful suggestions
to re-implement both approaches1314.

We evaluate all three approaches on both datasets described
in Section IV. We performed 10 training and testing runs
for each system, where the first 20% of the datasets were
used for training and the remaining 80% was used for
testing. Table IV shows the average results of all 10 runs of
this evaluation. We see that on both datasets, DEEPCASE
performs the best in terms of evaluation metrics. The only
downside of DEEPCASE is that the runtime is slightly slower
than DeepLog, but as we show in Appendix H, DEEPCASE
is easily fast enough for real-world application. In short,
DEEPCASE shows improvements over state-of-the-art works
that were specifically designed to predict future events, while
handling their complex relations.

2) Evolving event patterns: Our second challenge is
dealing with evolving threats and event patterns. DEEPCASE
should be able to detect new event sequences and group
them into new clusters to show to the security operator. In
addition, DEEPCASE uses a neural network in the CONTEXT
BUILDER to model sequences. We generally expect the results
to improve as we show the network an increasingly large
number of event sequences. We recall that these sequences
are automatically generated, and therefore do not need to be

13DeepLog code is available at https://github.com/Thijsvanede/DeepLog
14Tiresias code is available at https://github.com/Thijsvanede/Tiresias.

TABLE V
COMPARISON BETWEEN UPDATING STRATEGIES. WE SHOW THE
INCREASED NUMBER OF COVERED EVENTS WHEN DEEPCASE IS UPDATED
AND ITS PERFORMANCE METRICS. WE COMPARE DEEPCASE OVER TIME
WHEN NOT UPDATED WITH DAILY, WEEKLY AND MONTHLY UPDATING.

Metrics over covered data

Updates Coverage Precision Recall F1-score Accuracy

None 87.38% 96.19% 92.75% 93.67% 92.75%
Monthly (+411K) 93.29% 95.64% 92.16% 93.16% 92.16%
Weekly (+450K) 93.93% 94.84% 90.92% 92.30% 90.92%
Daily (+466K) 94.23% 95.12% 91.39% 92.68% 91.39%

labeled. When monitoring a new IT infrastructure or handling
events of new detectors, DEEPCASE should quickly be able
to update using these new incoming events.
Online updating. We demonstrate DEEPCASE’s ability
to evolve with new events. Operating in manual mode,
our approach already is able to deal with new events and
different event patterns. Therefore, we evaluate the increase
in performance of DEEPCASE running in semi-automatic
mode if periodically updated. In this experiment, we compare
the performance between no updates and daily, weekly and
monthly updates. In each update, we show new data to the
CONTEXT BUILDER and add newly produced and manually
labeled clusters to the database of the INTERPRETER to be
used for comparing future event sequences.

Table V shows the results for this experiment. We find
that regularly updating DEEPCASE improves its coverage
between 5.91 and 6.85 percentage points. The performance
in terms of accurately predicting the risk level of these newly
covered items is only marginally lower than the original
detection performance. This is mostly due to having fewer
datapoints available for accurate classification. Interestingly,
we found that the improvements in coverage came from
newly added clusters to the database rather than improved
confidence of the CONTEXT BUILDER. In fact, in some cases
the CONTEXT BUILDER became less confident, especially
when having to learn to classify new events. To illustrate this,
consider a context X that is used to predict an event eold. Now
consider a newly observed event enew with the same context
X . When the CONTEXT BUILDER is updated, it is taught
to lower its confidence for X to predict eold as there is now
also the option to predict enew. Nevertheless, this confidence
reduction allows us to deal with new events. Moreover, the
lower confidence is more than made up for by the additional
coverage resulting from updating the INTERPRETER.

3) Explainable clusters: In manual mode, DEEPCASE
produces clusters that security operators inspect and classify.
We have shown in Section V-B3 that it is often enough for
operators to sample a few sequences from each cluster to
determine its risk level. In this section, we evaluate to what
extent our attention query improves the explainability of
event sequences. Appendix F highlights some characteristics
of individual clusters.
Attention query. One way in which DEEPCASE improves
its explanation of security events is through the attention
query. This query increases the confidence of the CONTEXT
BUILDER in the actual security event that occurred by shifting
the attention to the more relevant contextual events. In this
experiment, we measured the increase in confidence for the
actual event using this attention query. Again, we trained

https://github.com/Thijsvanede/DeepLog
https://github.com/Thijsvanede/Tiresias

the CONTEXT BUILDER on the first month of data from
the LASTLINE dataset as in all other experiments. Next, we
predicted security events from their context and measured the
confidence level in the actual event that occurred with and
without applying the attention query. Without the attention
query, the CONTEXT BUILDER reached the confidence
threshold of 0.2 in 86.11% of cases. Conversely, applying
the attention query resulted in a confidence ≥ 0.2 in 92.21%
of cases. This shows that the attention query improves the
coverage for explainable events by 6.10%. For the HDFS
dataset, this number increased from 94.66% to 99.24%, an
improvement of 4.58 percentage points.

D. Robustness
Using DEEPCASE to reduce the workload of security

operators may also create an additional attack surface for
adversaries. After all, if our approach allows adversaries to
maliciously craft attacks such that DEEPCASE discards them
as being completely benign, reducing the workload would
not serve its purpose. Moreover, our approach itself may be
targeted by an attacker to annul the workload reduction for
security operators. As our approach relies on events produced
by security event detectors, we consider attacks that bypass
or alter detector outputs to be outside the scope of this
research. Therefore, we discuss and evaluate to what extent
an adversary can manipulate DEEPCASE itself.

Denial of service attack
First, an attacker can perform a denial of service (DoS)

attack against DEEPCASE. Here, we do not focus on (D)DoS
attacks against a monitored device, as this type of attack will
simply generate a single cluster. Instead, we discuss DoS
attacks with the purpose of letting DEEPCASE generate so
many new clusters or sequences that cannot be handled by
our approach, overloading security operators. In Appendix H,
we show that our approach is able to process more than
10 K sequences per second on a system that has a good
graphics card. Therefore, we can safely assume that the
bottleneck for DoS attacks is the number of sequences
that the human operator has to manually inspect. While
DEEPCASE currently does not provide countermeasures
for this type of attack, a sudden surge of new sequences to
inspect would cause suspicion for a security operator, even
if the individual sequences do not seem malicious. In fact,
we found that in the LASTLINE dataset, for each device
monitored in semi-automatic mode, DEEPCASE triggers a
new sequence to inspect only once every 2.5 days. A single
device producing many more events than the average (in the
LASTLINE dataset, the worst infected machine produced 607
unknown sequences in a single day) is likely to be thoroughly
scrutinized by security operators. We discuss DEEPCASE’s
limitations with respect to DoS attacks in Section VI-2.

Evasion attack
Second, an attacker may purposely trigger additional

security events to change the context of the attack events.
Thereby, the attacker either 1) changes the context sequence
of an ongoing attack such that it matches a benign cluster
instead of a malicious cluster; or 2) attempts to create a new
and benign cluster that can later be used to perform an attack.

TABLE VI
PERFORMANCE OF DEEPCASE UNDER EVASION ATTACK. DEEPCASE
BECOMES LESS CONFIDENT ABOUT EVENT SEQUENCES AND SENDS
THESE OUTLIER SEQUENCES TO SECURITY OPERATORS. THE REMAINING
SEQUENCES, FOR WHICH DEEPCASE REMAINS CONFIDENT, PERFORM
SIMILAR TO WHEN NO INJECTION TAKES PLACE.

Metrics on non-outlier data

Injected Outliers Precision Recall F1-score Accuracy

0/10 19.92% 98.62% 96.43% 96.88% 96.43%
1/10 21.22% 98.88% 97.26% 97.69% 97.26%
2/10 22.86% 99.06% 97.77% 98.17% 97.77%
3/10 25.51% 99.19% 98.14% 98.51% 98.14%
4/10 29.67% 99.29% 98.40% 98.75% 98.40%
5/10 35.55% 99.39% 98.61% 98.94% 98.61%
6/10 42.66% 99.46% 98.78% 99.08% 98.78%
7/10 50.26% 99.52% 98.92% 99.20% 98.92%
8/10 57.88% 99.57% 99.05% 99.30% 99.05%
9/10 68.94% 99.57% 99.16% 99.36% 99.16%

10/10 98.01% 97.92% 96.03% 96.50% 96.03%

1) Detecting evasive attacks: DEEPCASE processes event
sequences of an evading attacker in one of three ways: 1) the
attack is still classified as an attack; 2) the attack is classified
as benign (either by hiding in a benign cluster in manual mode,
or by being assigned an INFO risk cluster in semi-automatic
mode); or 3) the attack is considered an outlier and passed to
a security operator. We consider case 2 the only successful
outcome for an attacker, as both cases 1 and 3 will be shown
to a security operator. In case an attacker tries to create a new
benign cluster, such a new cluster will always be passed to a
security operator, as non-matching contextual sequences are
labeled as outliers. Therefore, in this experiment we evaluate
to what extent an attacker can change the context of an event
from a malicious to a benign cluster without becoming an
outlier, which would be shown to the security operator.

2) Evaluation: We simulated an evasion attack by inserting
random security events in the context of events from the
LASTLINE dataset. We note that an attacker with insider
knowledge of DEEPCASE can perform an evasion attack
by selecting specific security events that perform better than
random events. We discuss this scenario in Section VI-2,
where we show that having specific knowledge of
DEEPCASE’s clusters is better than inserting random events
possible for only 6.32% of clusters. For the random security
events, we looked only at event sequences with a risk level of
LOW or higher, i.e., INFO risk levels were omitted as they did
not contain attacks. In this experiment we inserted random
events into the context ranging from 0% to 100% percent of the
context size in steps of 10%. Where 0% is the original context
and injecting 100% completely altered the context. Next, we
measured the number of sequences marked as outliers and
the performance metrics over the remaining sequences.

Table VI shows that the performance of DEEPCASE on
non-outlier sequences stays roughly the same across different
numbers of injected events. However, the number of outlier
sequences increase with the number of injected events. For
minor perturbations, the CONTEXT BUILDER is still able to
detect enough relevant context events to be able to accurately
model the sequence. However, when an attacker injects
many events, the number of outlier sequences rises quickly.
This means that DEEPCASE notices unusual patterns and
escalates these sequences to a security operator.

VI. DISCUSSION

We have shown that our approach successfully reduces
the number of events presented to security operators by
95.69% in manual mode and 90.53% in semi-automatic
mode. Nevertheless, there are some aspects of our approach
to be addressed in future work.

1) Bro/Zeek and programmable rules: Modern NSM and
IDS systems such as Zeek [33] often include ways to manually
define expert rules. As we have shown in the evaluation, such
rule based systems work very well for the scenarios that they
cover, and even outperform DEEPCASE in terms of accuracy
for the covered events. However, the main issue is that
manually defined rules often have much difficulty covering
all generated events. Therefore, we believe that DEEPCASE
offers a complementing solution to existing rule-based
systems, as we ensure many more events are covered, while
remaining conservative in our prediction such that less than
0.001% of events are misclassified with a lower risk level.

2) Evasion: For DoS attacks against DEEPCASE, the
main limitation of our approach lies in the case where
the attacker gradually increases the number of sequences
that DEEPCASE sends to a security operator. While such
an attack can significantly impact the workload reduction
achieved by our approach, DEEPCASE will still show these
sequences produced by the DoS attack to security operators.
Under such an attack, DEEPCASE performs equivalently to
the regular setting where DEEPCASE is not used.

Furthermore, we note that in our evasion experiment
from Section V-D we injected random events. In reality, an
adversary with knowledge of existing clusters can maliciously
craft its injected events to remain undetected. We observe
that the only way in which it is possible to change the
malicious context of a malicious event e, is if there exist both
a malicious cluster (malicious context + event e) and a benign
cluster (benign context + event e) for that given event. We
analyzed our clusters and found that only 6.32% of clusters
have this property, meaning that for 93.68% of clusters,
it is impossible to inject security events that would turn a
malicious sequence into a benign sequence. Notably, we
observed that the clusters for which switching is possible are
often only a single step in a larger attack (e.g., the clusters for
beaconing activity, where detection of connecting to
the command and control server can be circumvented). Other
steps of the attack, such as uploading large amounts of data
or signature hits are more difficult to bypass without being
triggered as outliers. In short, evasion attacks may be possible
for 6.32% of the clusters if an attacker exploits knowledge of
how clusters are formed, which is a limitation of DEEPCASE.

3) SOAR systems: Our work shows that DEEPCASE
creates clusters of similar event sequences that correspond
to similar risk levels for a machine. However, these clusters
are used only to filter benign sequences and classify the risk
levels of malicious sequences before showing them to security
operators. Similar event sequences intuitively signal similar
threats infecting a device. This would mean that the response
of the security operator is also similar in terms of removing
the threat and patching the device. Such automated response
systems are known in industry as “security orchestration,
automation and response”, i.e., SOAR systems. In its current

form DEEPCASE could help SOAR systems when operators
create automated responses per cluster.

4) Relative risk levels: In its current form, DEEPCASE
does not distinguish between risk levels for different machines
or organizations, it merely produces a risk analysis based on
previously observed event sequences. However, in practice,
devices that are vital for an organization may have a lower
tolerance for potential risks than other devices. As our
approach analyzes event sequences on a per-device basis, we
suggest to forward lower risk event sequences to the security
operators for vital devices. If this is done only for a small
set of devices, the impact on workload reduction should be
minimized. However, further research is required to evaluate
the full impact on workload reduction.

5) Attention and explainability: Our approach uses an
attention mechanism to select relevant parts of the context
of an event. This attention mechanism is a popular approach
in the current state-of-the-art research into natural language
processing (NLP). In this domain, there is an ongoing
discussion whether attention may be used for explaining
feature importance [27]. The main critique here is that
the attention vector used in state-of-the-art works (e.g.,
BERT [14]) does not apply attention 1-to-1 to each input, but
rather maps attention to a complex combination of different
inputs. We mitigate this critique by multiplying the attention
directly with the embedding of each context event creating
a direct mapping (see the Event Decoder in Section III-B3).
Furthermore, the results from our evaluation show that
combining the attention with each individual event can be
used for accurate matching and filtering of event sequences.

6) Transferability: Our approach models event sequences
based directly on the events produced by underlying security
detection systems. This means that changes in the detectors
will affect the performance of DEEPCASE in terms of
filtered sequences. We have shown that our approach can
automatically update itself with new detectors in Section V-C2.
In some scenarios, an operator may want to take a pre-trained
model from one organization and apply it to another
organization to avoid having to run the manual mode. Further
research could show us how well existing models can transfer
to other settings, using methods such as transfer learning [32].

7) Context: One limitation of DEEPCASE is that it only
deals with events in the context of the same machine. While
it would be interesting to find cross-host relations between
events, we view this as future work. Another limitation of
DEEPCASE is the limited size of the context it can deal with.
Therefore, attacks over long periods of time and contexts
filled up with many unrelated events cannot be properly
assessed. Our parameter selection (Appendix D) showed that
incrementing the size of the context (both in terms of time
and number of events) beyond 5 samples and 1 hour has
limited effects on the performance.

8) Transformers: Our approach uses an Attention-based
Encoder-Decoder model. Recent advances in the field of
NLP have improved this type of architecture in the form of
Transformers [42], of which notable examples are BERT [14]
and GPT-3 [7]. These transformers are based on the same
concept of attention as our work, but offer a larger amount
of parallelization. For a more detailed description, we refer
to the original paper [42]. While this transformer architecture

would also work for DEEPCASE, the increased complexity
of such a network would add little helpful insights into our
main concept, namely that attention can be used to explain
relations between security events.

VII. RELATED WORK

Related works have explored various ways to contextualize
and predict security events, automating the operators’ tasks.

A. Contextual security events

The default method of analysing security events is provided
by expert rules such as those provided by AlienVault’s
OSSIM, Sigma, and the rules that can be programmed in
software such as Zeek [33]. However, as we have shown in the
evaluation, these rules often only cover a limited subset (in our
evaluation a maximum of 36.97%) of all event sequences that
we observe. More automated methods such as NoDoze [22]
and UNICORN [21] model the security context of system-
level events and organization-wide events, respectively. Both
approaches model this context as provenance graphs that
track which processes are connected to triggered events. They
then automatically assign an anomaly score to this sequence
to assist the triaging process. The main drawback of these
approaches is that it requires process-level information of
monitored hosts in order to construct provenance graphs.
Other works, such as OmegaLog [23], go even further in
providing security operators with additional provenance
information by analyzing the executed binaries. Our work
drops the requirement for process-level information altogether
by focusing only on the security events themselves, and later
identifying correlated events using the CONTEXT BUILDER.
This allows us to handle events of less device-intrusive
detection mechanisms such as network-level security detectors.
Additionally, security operators can monitor more devices,
including those operating in bring-your-own-device settings.

B. Event prediction

Other works do not focus on classifying the threat level of
attacks, but rather focus on predicting the next attack steps
given a sequence of prior security events.

DeepLog [16] employs a recurrent neural network to predict
future events. In case the predicted event does not happen,
DeepLog raises an alert for an anomaly in the event sequence.
When their approach detects an anomaly, it is considered ma-
licious and passed through a separate workflow extraction sys-
tem to detect the underlying cause. Like many other systems,
DeepLog focuses on prediction of system logs, which means
that it is optimized for more detailed events. This can also be
observed from the similarity in performance between DEEP-
CASE and DeepLog on the HDFS dataset, and the difference
in the LASTLINE dataset. Furthermore, DeepLog focuses only
on anomalies, but an anomaly is not necessarily malicious.

Tiresias [36] does not predict anomalies, but instead tries
to accurately predict future events. While achieving a decent
performance with an F1-score of 95.68% versus 97.90% of
DEEPCASE, Tiresias is a complete black-box approach to
event prediction. This means that security operators have no
way of telling whether a particular prediction is meaningful
given a specific context.

In another paper, the same authors propose Attack2vec [37],
which detects changes in attack patterns based on differences
in preceding security events. While this is also a form of
contextual analysis, the goal and approach are strictly different.
Where Attack2vec only detects changes in attack trends,
DEEPCASE is able to also cluster these new attacks and
present them to security operators to immediately take action.

One of the earlier works in security event prediction is
Nexat [10], which uses a co-occurrence matrix of security
events to predict the most likely next event. However, this
approach both assumes straightforward relations between
events and is fully supervised. This makes it more difficult
to deal with rapidly evolving attack patterns as it constantly
needs to be retrained. Conversely, DEEPCASE offers
security operators a simple and effective approach to semi-
automatically update itself to deal with novel event sequences.

1) Attention-mechanisms: ALEAP [19] uses an attention
mechanism for event prediction. Unfortunately, their work
does not leverage this mechanism to provide contextual anal-
ysis, and, therefore, cannot properly assist security operators
in their work. Moreover, their approach only has a prediction
performance of only 72.36% precision (no mention of
accuracy/recall/F1-score). Besides the lower performance, the
complexity of the model is much higher than the one used in
our approach, leading to longer training and prediction times.

Brown et al. [6] also use attention mechanisms to enhance
prediction of security log messages. However, they predict
specific log attributes based on different attributes within
the same log message. Hence, they base their prediction of
maliciousness on meta-data of individual messages, such as
the machine generating an event, or the user that authenticated
an action, instead of other activities within the network. This
is simply a different approach to what many individual
security detection mechanisms already do.

2) Graph-based approaches: Other works capture context
through graph-based approaches, which can be built from
data [23], [30], [38]. The disadvantage of such approaches is
that they rely on predefined rules to model context. Therefore,
new patterns will remain unobserved, making it difficult to
give a complete overview of the context.

VIII. CONCLUSION

In this work, we proposed DEEPCASE, a novel approach
that assists security operators in analyzing security events by
inspecting the context of events. Unlike existing approaches,
this work does not require system-level information and can
therefore be used to analyze security events of any type of
security detector. Moreover, we showed that DEEPCASE
is able to deal with complex and evolving attacks without
resorting to a black-box approach.

Additionally, we showed that DEEPCASE reduces the
workload of security operators on real-world data by 95.39%,
and semi-automatically handles 90.53% of events with an
accuracy of 94.34%. Moreover, DEEPCASE underestimates
risk in less than 0.001% of cases, showing that real attacks are
rarely missed. These results demonstrate that contextual event
analysis is an effective technique for security event analysis
and a useful tool for real-world security operations centers.

ACKNOWLEDGEMENTS

We would like to thank our reviewers for their valuable
comments, which significantly improved our paper. This
work was partially supported by the MechaMan, NSF CNS-
1704253 and CHECRS, DARPA/AFRL FA8750-19C-0003
grants, as well as the Netherlands Organisation for Scientific
Research (NWO) in the context of the SeReNity project.

DECLARATION OF INTERESTS

Over the course of this research, Marco Cova, Christopher
Kruegel, and Giovanni Vigna were employed by Lastline.
In June 2020, after the conclusion of the main research
activities, Lastline was acquired by VMware. As part of this
transactions, the three authors joined VMware.

REFERENCES

[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer,
Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher
Kruegel. When malware is packin’heat; limits of machine learning
classifiers based on static analysis features. In Network and Distributed
Systems Security Symposium (NDSS), 2020.

[2] Saleema Amershi, Bongshin Lee, Ashish Kapoor, Ratul Mahajan, and
Blaine Christian. Human-guided machine learning for fast and accurate
network alarm triage. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI). AAAI, 2016.

[3] Muhamad Erza Aminanto, Lei Zhu, Tao Ban, Ryoichi Isawa, Takeshi
Takahashi, and Daisuke Inoue. Combating threat-alert fatigue with
online anomaly detection using isolation forest. In International Confer-
ence on Neural Information Processing, pages 756–765. Springer, 2019.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[5] Jon Louis Bentley. Multidimensional binary search trees used for asso-
ciative searching. Communications of the ACM, 18(9):509–517, 1975.

[6] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols.
Recurrent neural network attention mechanisms for interpretable system
log anomaly detection. In Proceedings of the First Workshop on
Machine Learning for Computing Systems, pages 1–8, 2018.

[7] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[9] Tobias Chyssler, Stefan Burschka, Michael Semling, Tomas Lingvall,
and Kalle Burbeck. Alarm reduction and correlation in intrusion
detection systems. In Detection of intrusions and malware &
vulnerability assessment, GI SIG SIDAR workshop, DIMVA 2004.
Gesellschaft für Informatik eV, 2004.

[10] Casey Cipriano, Ali Zand, Amir Houmansadr, Christopher Kruegel,
and Giovanni Vigna. Nexat: A history-based approach to predict
attacker actions. In Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC), pages 383–392, 2011.

[11] CISCO. Anticipating the Unknowns - Chief Information Security Officer
(CISO) Benchmark Study. Technical report, 2019. Retrieved from
https://ebooks.cisco.com/story/anticipating-unknowns/ on 2020-9-16.

[12] Frédéric Cuppens and Alexandre Miege. Alert correlation in a
cooperative intrusion detection framework. In Proceedings 2002 IEEE
symposium on security and privacy, pages 202–215. IEEE, 2002.

[13] Demisto. The State of SOAR Report. Technical report, 2018. Retrieved
from https://start.paloaltonetworks.com/the-state-of-soar-report-2018
on 2020-9-16.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[15] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song.
Lifelong Anomaly Detection Through Unlearning. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 1283–1297, 2019.

[16] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep
learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1285–1298, 2017.

[17] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing
Ren, Daniel J. Dubois, Martina Lindorfer, David Choffnes, Maarten
van Steen, and Andreas Peter. FlowPrint: Semi-Supervised Mobile-
App Fingerprinting on Encrypted Network Traffic. In Network and
Distributed Systems Security Symposium (NDSS), 2020.

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In ACM International Conference on Knowledge
Discovery and Data Mining (KDD), volume 96, pages 226–231, 1996.

[19] Shuhan Fan, Songyun Wu, Zhiliang Wang, Zimu Li, Jiahai Yang,
Heng Liu, and Xinran Liu. Aleap: Attention-based lstm with event
embedding for attack projection. In 2019 IEEE 38th International
Performance Computing and Communications Conference (IPCCC),
pages 1–8. IEEE, 2019.

[20] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 315–323, 2011.

[21] Xueyuan Han, Thomas F. J.-M. Pasquier, Adam Bates, James Mickens,
and Margo I. Seltzer. Unicorn: Runtime provenance-based detector for
advanced persistent threats. In 27th Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, 2020.

[22] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, and Adam Bates. Nodoze: Combatting
threat alert fatigue with automated provenance triage. In Network and
Distributed Systems Security Symposium (NDSS), 2019.

[23] Wajih Ul Hassan, Mohammad A Noureddine, Pubali Datta, and Adam
Bates. Omega-log: High-fidelity attack investigation via transparent
multi-layer log analysis. In Network and Distributed Systems Security
Symposium (NDSS), 2020.

[24] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and David
Wagner. Detecting credential spearphishing in enterprise settings. In
26th USENIX Security Symposium, pages 469–485, 2017.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[26] Xin Hu, Jiyong Jang, Marc Ph Stoecklin, Ting Wang, Douglas L
Schales, Dhilung Kirat, and Josyula R Rao. Baywatch: robust
beaconing detection to identify infected hosts in large-scale enterprise
networks. In 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 479–490. IEEE, 2016.

[27] Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv
preprint arXiv:1902.10186, 2019.

[28] Faris Bugra Kokulu, Ananta Soneji, Tiffany Bao, Yan Shoshitaishvili,
Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Matched and
mismatched socs: A qualitative study on security operations center
issues. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1955–1970, 2019.

[29] Solomon Kullback and Richard A Leibler. On information and
sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.

[30] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing,
and Dan Meng. Log2vec: A heterogeneous graph embedding based
approach for detecting cyber threats within enterprise. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 1777–1794, 2019.

[31] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran
Sekar, and VN Venkatakrishnan. Holmes: real-time apt detection through
correlation of suspicious information flows. In 2019 IEEE Symposium
on Security and Privacy (S&P), pages 1137–1152. IEEE, 2019.

[32] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2009.

[33] Vern Paxson. Bro: A system for detecting network intruders in
real-time. Computer networks, 31(23-24):2435–2463, 1999.

[34] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,
and Lorenzo Cavallaro. TESSERACT: Eliminating experimental bias in
malware classification across space and time. In 28th USENIX Security
Symposium, pages 729–746, 2019.

[35] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional
entropy-based external cluster evaluation measure. In Proceedings of
the 2007 joint conference on empirical methods in natural language
processing and computational natural language learning (EMNLP-
CoNLL), pages 410–420, 2007.

[36] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca
Stringhini. Tiresias: Predicting security events through deep learning.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 592–605, 2018.

[37] Yun Shen and Gianluca Stringhini. Attack2vec: Leveraging temporal
word embeddings to understand the evolution of cyberattacks. In 28th
USENIX Security Symposium, pages 905–921, 2019.

https://ebooks.cisco.com/story/anticipating-unknowns/
https://start.paloaltonetworks.com/the-state-of-soar-report-2018

[38] Xiaokui Shu, Frederico Araujo, Douglas L Schales, Marc Ph Stoecklin,
Jiyong Jang, Heqing Huang, and Josyula R Rao. Threat intelligence
computing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1883–1898, 2018.

[39] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 2818–2826, 2016.

[40] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing
Qin. Learning sentiment-specific word embedding for twitter sentiment
classification. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 1555–1565, 2014.

[41] Martin Ukrop, Lydia Kraus, Vashek Matyas, and Heider Ahmad Mutleq
Wahsheh. Will you trust this tls certificate? perceptions of people
working in it. In Proceedings of the 35th Annual Computer Security
Applications Conference (ACSAC), pages 718–731, 2019.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems
(NIPS), pages 5998–6008, 2017.

[43] Thomas Vissers, Jan Spooren, Pieter Agten, Dirk Jumpertz, Peter
Janssen, Marc Van Wesemael, Frank Piessens, Wouter Joosen, and
Lieven Desmet. Exploring the ecosystem of malicious domain registra-
tions in the .eu tld. In International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), pages 472–493. Springer, 2017.

[44] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I
Jordan. Detecting large-scale system problems by mining console logs.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP), pages 117–132, 2009.

[45] Carson Zimmerman. Ten strategies of a world-class cybersecurity
operations center. Technical report, 2014. Retrieved from
https://www.mitre.org/publications/all/ten-strategies-of-a-world-class-
cybersecurity-operations-center on 2020-10-26.

APPENDIX A
ATTENTION QUERY

Traditional attention-based neural networks use attention to
focus on specific inputs while predicting an output. In this
work, we introduced an attention query15, which asks the neu-
ral network “given the actual event that occured, which atten-
tion distribution would have resulted in the correct prediction?”
This is a powerful technique that allows us to automatically
learn complex relations within the context of security events.

The attention query uses backpropagation to optimize the
attention vector for a given input and output to the event
decoder. Mathematically, the event decoder is represented as

y=g(f(W

(
n∑

i=0

αix
′
i

)
+b)) (4)

where g(·) is the softmax function, f(·) is the ReLU
activation function, W (·)+b is the linear layer and

∑n
i=0αix

′
i

is the matrix multiplication. To find the optimal attention for
a given output, we compute the derivative of the loss function
L(ŷ, y) with respect to the variables α, representing the
attention vector as in Equation 5. Finally, we use the Adam
optimization algorithm with 100 steps to adjust the attention
distribution and find the optimal attention distribution for
the observed event. Note that this increases the number of
contextual event sequences that we can model. However, there
can still be cases where the contextual event sequences do not
yield any information regarding the observed event. In these
situations, the output probability for observed event ei remains
low and we pass the event to the security operator for further
evaluation. For a full evaluation we refer to Section V-C3.

15We provide a pytorch implementation of the attention query at
https://github.com/Thijsvanede/DeepCASE

δL(ŷ,y)

δα
=
δL(ŷ,y)

δg(·)
· δg(·)
δf(·)

· δf(·)
δαx′

· δαx
′

δα
(5)

APPENDIX B
ATTENTION EXAMPLE

In Section V-B2, we showed that naive clustering does
not generalize as well as DEEPCASE which includes the
CONTEXT BUILDER. To give a concrete example of this
difference in performance, consider the following sequence
of events as listed in Table VII. Here, the attention is
heavily focused on the Beaconing activity. Therefore,
using DEEPCASE, it will be clustered in a Beaconing
activity cluster, whereas the naive clustering approach
would place this in a cluster that covers both Beaconing
activity and Cryptocurrency.

TABLE VII
EXAMPLE SEQUENCE OF EVENTS. THIS EXAMPLE SHOWS THAT THE
ATTENTION WILL ENSURE THIS SEQUENCE IS CLUSTERED IN A BEACONING
ACTIVITY CLUSTER.

Event Attention

Login to cryptocurrency mining pool 0.0048
Login to cryptocurrency mining pool 0.0048
Login to cryptocurrency mining pool 0.0047
Login to cryptocurrency mining pool 0.0047
BitCoinMiner 0.0043
BitTorrent 0.0050
Beaconing activity 0.2564
FlyStudio 0.0048
Beaconing activity 0.3336
Beaconing activity 0.3769

APPENDIX C
LASTLINE DATASET DETAILS

Table VIII provides a more detailed description of the
LASTLINE dataset used in our evaluation. This dataset
captures security events of 20 international organizations of
different sizes.

TABLE VIII
DETAILS OF LASTLINE DATASET. AN OVERVIEW OF THE NUMBER OF
SECURITY EVENTS PRODUCED PER ORGANIZATION, CATEGORIZED BY RISK
LEVEL.

Risk level

Org. Machines Events INFO LOW MEDIUM HIGH ATTACK

1 4184 24422 24422 0 0 0 0
2 13 2879 2706 173 0 0 0
3 50 878 515 341 3 2 17
4 1376 8888 6553 798 1473 6 58
5 386 2599 1459 639 395 83 23
6 229627 7117123 4858475 2191848 19215 10761 36824
7 881 132416 123841 2358 2366 3848 3
8 2185 59595 57680 1430 224 29 232
9 53381 319975 304394 10615 658 27 4281

10 358 3337 2742 501 58 0 36
11 1973 81523 77316 3174 179 807 47
12 1123 14867 13344 1460 12 1 50
13 4607 191545 180352 6855 3642 134 562
14 14 1953 1883 70 0 0 0
15 188 26202 25927 275 0 0 0
16 23 382 260 74 27 3 18
17 18802 2062074 1850477 145995 32273 30584 2745
18 67749 340819 200296 15844 124379 111 189
19 74 2789 2302 483 0 0 4
20 391 6521 6140 373 3 5 0

https://www.mitre.org/publications/all/ten-strategies-of-a-world-class-cybersecurity-operations-center
https://www.mitre.org/publications/all/ten-strategies-of-a-world-class-cybersecurity-operations-center
https://github.com/Thijsvanede/DeepCASE

TABLE IX
PARAMETERS. VALUES OF ALL PARAMETERS USED IN DEEPCASE.

Subsystem Parameter Value Section

Sequencing events Sequence length 10 D-A
Sequence time 1 day D-A

CONTEXT BUILDER
hidden dimension 128 D-B
δ 0.1 D-B

INTERPRETER
τconfidence 0.2 D-C
ε 0.1 D-C
minimum sequences 5 D-C

APPENDIX D
PARAMETER SELECTION

DEEPCASE uses the parameters listed in Table IX. We
determined the values of these parameters by performing a
10-fold grid search on the first 1% of data of the LASTLINE
dataset sorted by time. This first 1% is split 50:50 into
training and testing sets, and is used only for the parameter
selection, i.e., it is not used in further experiments.

A. Sequencing events
The context is defined by 1) the maximum number of events

in the context (length) and 2) the maximum time difference
between an event and its context (time). To obtain the optimal
values, we performed a 10-fold grid search over length
values 1, 2, 5, 10, 20 and time values of 1 minute, 1 hour, 1
day, 1 week. For all combinations, we trained the CONTEXT
BUILDER with a hidden dimension of 128 and a δ of 0.1, and
we evaluated whether the threshold for the corresponding
event was higher than 0.2 (τconfidence). We found that for all
input sizes ≥ 5 and times ≥ 1 day, between 95.00% and
95.02% of events were correctly predicted from their given
context. Therefore, for both length and time values we chose
the middle option of 10 events with a maximum age of 1 day.

B. The CONTEXT BUILDER

Similar to sequencing events, we performed a 10-fold
search for the hidden dimension of the CONTEXT BUILDER,
and evaluated whether the threshold for a correctly predicted
event reached at least 0.2. Here, we searched powers of 2,
21,22,23,...210 and found an optimal value for 27=128. The
same search over the δ values of 0.0 to 1.0 with steps of 0.1
yielded an optimal value of 0.1. For the δ value, the increased
performance was mainly due to correct classification of
classes with very few samples. This follows from the idea
of the δ value, which increases performance at the cost of a
slightly reduced confidence.

C. The INTERPRETER

Finally, we used the values obtained from the parameter
selection of event sequences and the CONTEXT BUILDER to
select parameters for the INTERPRETER. Here we performed
a grid search over the τconfidence values and ε values, both
ranging from 0.1 to 1.0 with steps of 0.1. During this
experiment, we measured the overall performance in terms of
the F1-score, yielding a τconfidence of 0.2 and ε of 0.1. For the
minimum sequences, i.e., the minimum number of sequences
to be considered a cluster, we chose 5 to give the security
operator enough samples to provide a confident prediction.
We elaborate on this choice further in Section V-B3.

APPENDIX E
WORKLOAD REDUCTION - HDFS DATASET

Table X shows the workload reduction achieved by
DEEPCASE on the HDFS dataset. In this overview, the alert
throttling is left out because the dataset does not contain
any timestamp information for the alerts. Additionally, there
is no comparison with rulesets as there are no expert-rules
available for this dataset.

TABLE X
WORKLOAD REDUCTION - HDFS. AVERAGE WORKLOAD REDUCTION OF
DEEPCASE COMPARED WITH NAIVE CLUSTERING TECHNIQUES*.

Workload reduction
Method Alerts Reduction Coverage Overall

M
an

ua
l DEEPCASE 393 95.71% 96.39% 92.26%

N-gram 1,204 86.58% 94.33% 81.68%
Cluster DEEPCASE 446 95.26% 99.01% 94.32%

Se
m

i-
A

ut
om

at
ic DEEPCASE N/A 100.00% 96.43% 96.43%

N-gram N/A 100.00% 93.83% 93.83%
Cluster DEEPCASE N/A 100.00% 98.82% 98.82%

* The HDFS dataset does not contain any timestamps, nor are there
any rules available. Therefore, we could not compare with alert throttling or
rule based approaches.

APPENDIX F
CLUSTER EXAMPLES

We recall that the INTERPRETER produces clusters by
comparing the contextual events in a sequence weighted by
the attention vector. These models describe the total attention
of each security event type in contextual event sequences.
As clusters contain similar sequences, we can describe its
characteristics from the vectors detailing the total attention
per event. We describe a cluster by simply averaging the
attention values for each event over all sequences.

These cluster descriptions uncover interesting patterns that
illustrate how an operator could reason about assigning risk
levels. Figure 5 gives examples of these descriptions. Here the
relevance of events found in the security context of a cluster
is scored according to its average attention value. Consider
the event in the LASTLINE dataset where a detector observes
an unusual user agent string. This may be due to
a newly installed or otherwise benign program, or it may
be triggered by malware that does not imitate common user-
agents. This event occurs 4.6K times in the dataset, which our
INTERPRETER groups into 19 different clusters. To determine
whether an event of type unusual user agent string
is malicious or not, we have to look at the context weighed
by the attention values. The first example in Figure 5 shows
a case with 1) NO CONTEXT description if the event occurs
where fewer than 10 detectors were triggered in the day before
observing the event, indicating that there is no other supporting
evidence for an attack; and 2) other detectors for the similar
patterns such as unusual JA3 fingerprint. This
cluster does not directly indicate malicious behavior. However,
other cluster descriptions in Figure 5 show the unusual
user agent string event in combination with detectors
for the Tor browser. Depending on the organization, this
may be considered a policy violation and can be classified as
such. Finally, there are clusters with more malicious indicators
such as observing unusual user agent string in

unusual user agent string (benign)
NO CONTEXT 47.95%
unusual user agent string 7.91%
unusual JA3 fingerprint 42.70%

unusual user agent string (malicious)
NO CONTEXT 20.84%
unusual user agent string 35.09%
unknown crypto miner 43.93%

beaconing activity (malicious)
NO CONTEXT 3.68%
unusual data upload 32.29%
active directory trust enumeration 1.21%
recently registered domain access 62.64%

Fig. 5. Cluster description examples. Three examples of both benign and
malicious clusters. All clusters are described by the average relevance of
other contextual events as described by the attention.

combination with a large data download, or signature
hits for malware (e.g., Linkury) or crypto miners.

As another example, let us look at the contexts observed
for beaconing activity, which can be triggered by
malware periodically contacting its command and control
server, or can be triggered by benign software periodically
checking for updates. We observe several clusters for
beaconing activity. Some clusters contain only events
by detectors looking for repetitive network connections,
which do not necessarily indicate malicious activity. Other
clusters, such as shown in Figure 5, show signs of malware
because beaconing activity is detected in combination
with recently registered domain access and
unusual data uploads.

APPENDIX G
CLUSTER DISTRIBUTION

Clusters produced by the INTERPRETER vary in sizes
as some attacks or benign patterns are more frequent than
others. Figure 6 gives an overview of the skewed distribution
of clusters. We suggest that security operators sample a fixed
number of sequences from each cluster. This means that the
main body of workload reduction is due to large clusters.
Other cluster risk levels show the same skewed distribution.

5 10 20 30 40 50

50
-

10
0

10
0

-
1K

1K
-

10
K

10
K

+0

100

200

Cluster size

N
o.

cl
us

te
rs

Fig. 6. Cluster size histogram of clusters. Clusters are skewed toward the
smaller sizes. This behavior is observed for all risk levels. In general, the
resulting workload reduction is most beneficial from the largest clusters.

APPENDIX H
RUNTIME ANALYSIS

We evaluate the average of 10 runs of DEEPCASE for
various numbers of sequences. All experiments ran on a In-
tel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz machine running
Ubuntu 18.04 LTS. Neural network training and prediction
ran on a NVIDIA TITAN RTX 24 GB TU102 graphics card.

Figure 7 shows the result of this analysis. The total runtime
is made up of four main computations: 1) training the CON-
TEXT BUILDER; 2) the attention query; 3) INTERPRETER’s
clustering in manual mode; and 4) matching known clusters
in semi-automatic mode. We note that Figure 7 shows only
a single training epoch of the CONTEXT BUILDER, which
in reality is trained with 100 epochs. However, these epochs
scale linearly and need to be trained only once for the manual
mode, or when updated. From this figure, we find that it takes
DEEPCASE less than 5 minutes to process 1 year of data for a
single company (roughly 1.2M event sequences, based on the
average number of sequences in the LASTLINE dataset). Train-
ing the neural network of CONTEXT BUILDER consumes the
largest part of the total runtime. We note that training epochs
together with the attention query can be highly parallelized as
they are performed on a GPU. Furthermore, we note that while
DBSCAN clustering has a worst case complexity of O(n2),
using KD-trees [5] allows us to reduce that to a complexity of
O(nlogn). Overall, DEEPCASE can easily keep up with the
number of generated events in large, real-world environments.

1 year1 year

1 month1 month

1 week1 week

1 day1 day

1 10 100 1K 10K 100K 1M 10M
0

5

10

15

20

25

30

No. event sequences

Ti
m

e
(m

in
ut

es
)

Training epoch
Attention query
Clustering
Matching

Fig. 7. Runtime analysis of DEEPCASE. Average runtime of our approach
for different numbers of contextual sequence inputs. The runtimes of each
sub-computation are stacked to show total runtime of DEEPCASE. For
reference, we show the number of event sequences an average organization
in the LASTLINE dataset produces during one day, week, month and year.

	Introduction
	Security model
	Approach
	Sequencing events
	The CONTEXT BUILDER
	Encoder
	Attention Decoder
	Event Decoder

	The INTERPRETER
	Attention query
	Clusters

	Manual analysis
	Cluster sampling
	Outliers

	Semi-automatic analysis

	Dataset
	Evaluation
	Setup
	Workload reduction
	Coverage
	Cluster classification
	Sampling
	Workload reduction
	Alert throttling
	Expert rules
	N-grams
	Clustering

	Challenges
	Complex relations
	Evolving event patterns
	Explainable clusters

	Robustness
	Detecting evasive attacks
	Evaluation

	Discussion
	Bro/Zeek and programmable rules
	Evasion
	SOAR systems
	Relative risk levels
	Attention and explainability
	Transferability
	Context
	Transformers

	Related work
	Contextual security events
	Event prediction
	Attention-mechanisms
	Graph-based approaches

	Conclusion
	References
	Appendix A: Attention query
	Appendix B: Attention example
	Appendix C: LASTLINE dataset details
	Appendix D: Parameter selection
	Sequencing events
	The CONTEXT BUILDER
	The INTERPRETER

	Appendix E: Workload reduction - HDFS dataset
	Appendix F: Cluster examples
	Appendix G: Cluster distribution
	Appendix H: Runtime analysis

