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Abstract. Malware aims to stay undetected for as long as possible.
One common method for avoiding or delaying detection is the use of
code injection, by which a malicious process injects code into another
running application. Despite code injection being known as one of the
main features of today’s malware, it is often overlooked and no prior
research performed a comprehensive study to fundamentally understand
and measure code injection in Windows malware. In this paper, we con-
duct a systematic study of code injection techniques and propose the first
taxonomy to group these methods into classes based on common traits.
Then, we leverage our taxonomy to implement models of the studied
techniques and collect empirical evidence for the prevalence of each spe-
cific technique in the malware scene. Finally, we perform a large-scale,
longitudinal measurement of the adoption of code injection, highlighting
that at least 9.1% of Windows malware between 2017 and 2021 performs
code injection. Our systematization and results show that Process Hol-
lowing is the most commonly used technique across different malware
families, but, more importantly, this trend is shifting towards other, less
traditional methods. We conclude with takeaways that impact how fu-
ture malware research should be conducted. Without comprehensively
accounting for code injection and modeling emerging techniques, future
studies based on dynamic analysis are bound to limited observations.
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1 Introduction

Despite a significant effort put into research and development of defense mecha-
nisms [6,29], new malware is continuously developed at a rapid pace, making it
still one of the major threats on the Internet [8]. For malware to be successful, it
is in the author’s best interest to make sure that their samples stay undetected
for as long as possible [50]. One of the techniques used for this purpose is code
injection. Code injection is defined as the process in which an application copies
pieces of its code into another running program. This running program is then
tricked into executing the injected code, making it perform something it was
not originally intended to [7,11,46]. By extension, if a malicious program copies
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its malicious code into a legitimate application, it is not the malware itself that
exhibits the malicious behavior, but rather the application that was previously
considered benign. As a consequence, scanning an executable file for suspicious
code might not be sufficient, making the task of automating threat detection
significantly more involved.

Code injection has been often overlooked and, currently, its characterization
generally relies on heuristics. This includes testing for calls to well-known Win-
dows APIs such as VirtualAllocEx and WriteProcessMemory [7,10], finding
common byte-sequences in the sample [20,25,56], or looking for artifacts such as
suspicious memory pages that were injected by other processes [3,9,21,26,59].
However, there are various ways to perform code injection, including meth-
ods that do not introduce these artifacts [19,22,41,39,40]. This renders many
of the heuristics insufficient. Recent research attempted to formalize code injec-
tion [11,30], laying the foundation for a more generic understanding. However,
despite the positive contributions, there is still a significant number of injection
techniques that fall outside the current formalization—what we define passive
techniques in Section 3. Thus, there is a need for a better, more fundamental
understanding of what code injection entails, as well as a more systematic study
of injection techniques, to comprehensively classify this type of behavior.

In this research, we conduct the first systematic study of code injection tech-
niques. First, we collect 17 injection techniques used by malware and discussed in
the literature. We implement and test them to verify that they still work on mod-
ern software and hardware. Then, we compare every technique to each other and
identify reoccurring features. From this, we derive a more fundamental under-
standing of code injection and propose a categorization of the techniques based
on their common characteristics. Note that, while we mostly focus on studying
code injection in malware, injection techniques are also adopted by legitimate
software for benign purposes, as we show in our empirical evaluation (Section 6).
Our study provides a systematization and measurement of code injection but we
do not aim at distinguishing malicious versus benign uses.

Using our taxonomy, we perform a large-scale measurement of the adoption of
code injection by analyzing 47,128 malware samples observed between 2017 and
2021. To this end, we develop a framework to determine whether a sample adopts
any of the studied injection techniques and detail which techniques are adopted,
allowing for investigations of their usage and evolution. For such classification,
we leverage and re-implement well-known behavior graphs [16,35], which express
malware behavior—in our case, injection techniques—in terms of API/system
calls and their interdependence.

Our empirical evaluation reveals important insights. While the number of
samples adopting code injection does not significantly change over time, new
emerging techniques—often overlooked—are gaining more popularity compared
to the traditional methods that rely on API calls such as WriteProcessMemory.
This has a direct effect on the way future research on malware analysis should
move forward (Section 7). Without proper consideration of how malware might
propagate via code injection, studies based on dynamic analysis may miss sig-
nificant portions of malicious behaviors.



Understanding and Measuring Code Injection in Windows Malware 3

In short, we make the following contributions:

– Taxonomy of Code Injection: We survey 17 different code injection tech-
niques and propose the first taxonomy that classifies injection techniques
based on a set of identified common traits. On the base of our taxonomy, we
also release a labeled dataset of code injection samples.

– Measurement of the Adoption of Code Injection: We examine a set of
47,128 malware samples and depict a comprehensive picture of the current
prevalence and distribution of code injection techniques in the malware scene
between 2017 and 2021.

– Takeaways for Future Research: We provide insights and takeaways for
future research, highlighting the impact of our results, and laying out lessons
to take into account when designing new malware studies.

We release our implementation, as well as our labeled dataset of code injection
techniques at https://github.com/utwente-scs/code-injection-malware.

2 Background

Code injection can be defined as the act of copying and executing code in the
context of another process. Injections start by selecting a victim process and
finding existing executable memory pages within this process or allocating new
ones. Then, the code—referred to as the payload—is copied into this memory,
and the victim process is tricked into executing it. The goal of code injection is
to alter the behavior of the victim process, making it do something unintended.

Injecting code into another process is an effective way to hide the true (ma-
licious) intentions of a program. Detection mechanisms that solely focus on an-
alyzing the sample itself might not pick up on the behavior offloaded to the
victim process. Especially victim processes from a known vendor are an attrac-
tive option for an injector process, as these programs are often blindly trusted
by anti-malware [11,46]. For these reasons, several variants of code injection have
been adopted by modern malware families [23,49,60].

Unfortunately, fully abolishing code injection is not practical as several types
of legitimate software use code injection in benign contexts. For example, de-
buggers rely on injecting small chunks of code into the target process to stop its
execution and read its internal state [27]. Also, many operating systems feature
shim infrastructures to make up for incompatible version updates. These are im-
plemented by hooking into an API function and redirecting it to shim code, simu-
lating the original behavior of the API before a breaking change[36]. Prohibiting
code injection would mean giving up on these applications and frameworks.

Many operating systems feature mitigations that prevent illegitimate code
injections from happening. For example, Windows implements the User Account
Control (UAC) [5], where running processes are given an access token that can
be used to perform administrative tasks. Effectively, this means that a non-
privileged process cannot directly interact with (and thus cannot inject into)
a privileged process easily. However, the majority of processes on Windows do
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not require special privileges to execute. Furthermore, malware may be running
under special privileges (e.g., when it is packaged inside of an installer). Thus,
regardless of these mitigations, the number of processes to inject into is still
high, leaving code injection as a viable option for evading detection.

3 Code Injection Systematization

To obtain a more fundamental understanding of code injection, we survey 17
different code injection techniques commonly used in the malware scene. Then,
we identify similarities and differences, and we extract common traits to group
them into classes. These classes represent, to the best of our knowledge, the first
taxonomy of code injection.

3.1 Technique Selection

To obtain a representative set of code injection techniques, we queried vari-
ous sources that are well-known in the security community. These include the
MITRE framework, as well as technical malware briefings provided by six well-
known security companies, including The Infosec Institute, Elastic Security, Mal-
wareBytes, F-Secure, Symantec and Kaspersky. We also included various blog
posts of individual security researchers with example implementations and vari-
ations of the techniques. Since malware authors typically aim to maximize their
attack surface, we select only the techniques that work on Windows 10 (as it
is the most market-dominant OS at the time of conducting this research [55]),
and do not have a dependency on extra (third-party) software that needs to be
installed separately. With this process, we selected the following 17 techniques:

Shellcode Injection. This technique is the most fundamental form of code
injection and serves as a base for many other techniques. First, memory is allo-
cated in the victim process using a function such as NtAllocateVirtualMemory
with the PAGE EXECUTE READWRITE protection bit set. Then, shellcode is trans-
mitted into this allocated memory (e.g., using NtWriteVirtualMemory). Finally,
a thread with the address of the injected shellcode as its entry point is created
within the victim process (e.g., using NtCreateThreadEx) [21].

PE Injection. PE injection extends Shellcode Injection by including additional
logic to support injecting entire Portable Executable (PE) files. This allows for
easier development of larger, more complex payloads written in higher-level lan-
guages as opposed to small (handcrafted) assembly code [54].

Classic DLL Injection. Classic DLL Injection avoids PAGE EXECUTE READWRITE

allocations by storing the payload in a Dynamic-Link Library (DLL) file on the
disk. The injector writes the file path into some non-executable memory (i.e.,
PAGE READWRITE), and then creates a new remote thread starting at a function
such as LoadLibrary. This way, the victim process loads the payload DLL as if
it was a normal dependency, triggering its execution [18,42].

Reflective DLL Injection and Memory Module Injection. These two
techniques are variations of Classic DLL Injection that reimplement the func-
tionality of LoadLibrary. This way, they avoid the call to the original function
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and can also keep the payload DLL in memory. A Reflective DLL Injector ex-
ecutes this implementation via traditional Shellcode Injection, while a Memory
Module Injector performs most of the mapping on the injector’s side instead.
The latter also ensures that the mapped sections have the appropriate protec-
tion bits set (as opposed to only PAGE EXECUTE READWRITE), which contributes
to the stealthiness of the technique [21].

APC Shell and DLL Injection. These two techniques are variations of Shell-
code and Classic DLL Injection respectively that avoid the creation of new
threads by abusing the Asynchronous Procedure Call (APC) queue of an ex-
isting thread. APCs are function calls that are scheduled to be invoked by a
thread when the thread is e.g., waiting for an event or user input. By queuing
shellcode or a LoadLibrary call as an APC, Windows automatically loads and
triggers the execution of the payload whenever the thread is in such a state [38].

Process Hollowing and Thread Hijacking. These are one of the most com-
monly used methods for performing code injection and are sometimes also re-
ferred to as RunPE. The injector either creates a new suspended process or
suspends an existing one respectively, and unmaps (hollows out) all its sec-
tions from memory. Then, a new PE image is manually mapped into the victim
process and the main thread is redirected to the new entry point (e.g., using
NtSetContextThread). Finally, the process is resumed afterward [37,44].

IAT Hooking. During the loading procedure of a PE file, Windows resolves the
addresses of all functions that the PE depends on and puts them in its Import
Address Table (IAT). The IAT Hooking technique replaces one of these addresses
with one that points to the injected shellcode. This way, when the victim process
calls the original function using its IAT, the payload will be triggered instead,
without using thread creation or redirection APIs [28].

CTray VTable Hooking. This technique is similar to IAT Hooking but specif-
ically targets explorer.exe, the default file browser on Windows. Internally, the
browser defines a class CTray which implements the taskbar’s notification tray.
By replacing the address of its WndProc function, which is responsible for pro-
cessing every message that the tray receives (e.g., paint events), the technique
activates injected shellcode the moment the tray processes such a message [43].

Shim Injection. Shim infrastructures are small programs attached to legacy
software, that attempt to simulate the original behavior of an API after a break-
ing change was introduced by a Windows update. By extension, an injector can
register itself as a shim infrastructure to load and run arbitrary code within the
context of software that requires these legacy features [22].

Image File Execution Options (IFEO). Image File Execution Options are
settings stored in the Windows Registry that dictate how a specific application
identified by its name should be started by Windows. One of the parameters it
defines is the path to a debugger program that the application’s memory should
be replaced with when it is being loaded. IFEO Injection registers an executable
file as such a debugger [48].

AppInit Dlls and AppCertDlls Injection. Similar to IFEO, AppInit Dlls
and AppCertDlls are two Registry keys that store the paths to extra DLL files
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that should be loaded whenever an application starts. The key difference is that
these DLLs are loaded by any process that is started after the Registry change
was made, as opposed to specific processes [39,40].

COM Hijacking. The Common Object Model (COM) is a Windows framework
that allows for software components to be used across multiple programming
languages. Components are stored in the Registry as file paths to the DLLs that
implement them and are loaded and instantiated on-demand. COM Hijacking
replaces one of these DLL file paths with a path of its own, tricking the victim
process into loading the payload DLL instead of the original component [41].

Windows Hook Injection. The Windows API exposes functions to subscribe
to various global system events such as mouse clicks and key presses. More
specifically, a thread can be instructed to invoke a callback defined in a specific
DLL when such an event occurs. Typically, threads are chosen from the current
process. However, the API allows for selecting any thread running on the system.
Windows Hook Injection abuses this by registering a callback for one of the
victim process threads, letting it load and execute a payload DLL [19].

3.2 Common Traits

From the studied techniques, we extract common traits that help us characterize
the techniques more precisely, which we will introduce below.

Moment of Execution. This trait describes the moment in which the code
can be injected and executed in the victim process. Some techniques can inject
payloads at any time while the process is running, whereas in others it is only
possible upon startup of the victim process or operating system.

Transmitter. The transmitter is the process that is responsible for copying the
code into the victim process. For many techniques, this is done by the injector
process itself, usually through a call to NtWriteVirtualMemory. However, some
techniques trick the victim process into loading the code instead, e.g., by letting
it read a malicious file.

Catalyst. The catalyst is the process responsible for triggering the execution of
the injected code. Similar to the Transmitter, this is often done on the injector’s
side, e.g., by creating a thread within the victim process. Alternatively, the
victim may also be tricked into calling the injected code itself.

File Dependency. A good amount of techniques require a copy of the injected
code on the disk, usually in the form of a Dynamic Link Library (DLL). This
means that such a file needs to be stored before execution can take place.

Shellcode Dependency. Some techniques require a small chunk of code to be
injected directly into the victim process to execute the final payload.

Process and Threading Model. These two traits describe how malware se-
lects and interacts with the victim process and its threads. Some techniques in-
teract with already running processes or threads, while others spawn new ones.
Alternatively, some techniques rely on the operating system itself and do not
directly interact with any process or thread at all.
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Memory Manipulation Model. This describes the dependency on directly
allocating or manipulating the memory of the victim process. It is often accom-
panied by opening a process first and is present in most classic techniques.

Configuration Model. Some injection techniques depend on changing specific
settings of the victim process or underlying OS. They may alter the Windows
Registry, or install malicious plugins in a user application such as a web browser.
Often, they also rely on the existence of a file on the disk.

3.3 Taxonomy

Using the identified traits, we define a taxonomy for code injection (Table 1)
and discuss our classes below.

Active and Passive Injections. The most distinguishing feature that we ob-
serve deals with the level of interaction that is required by a code injection
technique. Many techniques actively communicate with the victim process by
creating or opening processes and threads and directly interacting with their
memory. Since these kinds of interactions often translate to distinct sets of API
calls, they can be observed by monitoring software more easily, which contributes
to the stealthiness (or lack thereof) of the technique. Therefore, let us introduce
the concept of active code injection techniques:

Definition 1 (Active Techniques). A code injection technique is active if it
directly interacts with the victim process or one of its threads, or actively changes
the victim process’ memory.

Many existing techniques are active. For example, Shellcode Injection opens
a handle to the victim process and uses it to directly inject executable memory
into it with the help of a system call such as NtWriteVirtualMemory [21]. In
contrast, a technique that abuses, for example, the shims infrastructure does not
directly communicate with the target process, nor does it actively changes its
memory. Rather, it lets the underlying OS load and execute the code instead [22].
Thus, Shim Injection is considered a passive technique.

Intrusiveness and Destructiveness. We can further subdivide active tech-
niques by looking at the type of interaction that is required. For example, some
techniques interrupt and manipulate the original execution of the victim pro-
cess. Sometimes this happens in a way that parts of the application or the entire
process stop working properly. Therefore, let us introduce the notion of intrusive
and destructive injection techniques:

Definition 2 (Intrusiveness). An active code injection technique is intrusive
if it directly changes (parts of) the victim process’ existing memory or threads.

Definition 3 (Destructiveness). A technique is destructive if it is intrusive
and (parts of) the application stop(s) working due to the intrusive intervention.

An example of a destructive technique is Process Hollowing, which creates
a new victim process in a suspended state and replaces the original memory
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Table 1: Taxonomy of code injection techniques and their characteristics.
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Thread Hijacking [37] A I I ✓ E E N ✓

IAT Hooking [28] A I V ✓ E E ✓

CTray Hooking [43] A I V ✓ E E ✓

APC Shell Injection [38] A I V ✓ E E N ✓

APC DLL Injection [38] A I V ✓ E E N ✓

N
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n
-I
n
tr
u
si
v
e Shellcode Injection [21] A I I ✓ E N N ✓

PE Injection [54] A I I ✓ E N N ✓

Reflective DLL Injection [21] A I I ✓ E N N ✓

Memory Module Injection [21] A I I ✓ E N E ✓

Classic DLL Injection [18,42] A I I ✓ E N N ✓
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n Shim Injection [22] P V V ✓ ✓ ✓

Image File Execution Options [48] L V V ✓ ✓ ✓

AppInit DLLs Injection [40] L V V ✓ ✓ ✓

AppCertDLLs Injection [39] L V V ✓ ✓ ✓

COM Hijacking [41] L V V ✓ ✓ ✓

Windows Hook Injection [19] A V I ✓ ✓

1 A: At any time, P: On process start, L: On library load.
2 I: Injector process, V: Victim process.
3 N: New process, thread or memory page creation, E: Existing process, thread
or memory page manipulation.

content with new code [44]. As a result, upon resuming, the victim process does
not perform its original activity anymore. This is in contrast with Classic DLL
injection, which forces the victim to load an additional library from the disk
without interrupting any threads or modifying their code [18]. Thus, Classic
DLL injection falls under the non-intrusive category.

Configuration-based Injections.Amore fine-grained subdivision can be made
in our class of passive code injection techniques. This subdivision groups together
techniques that require specific changes in the Registry, and is a direct result of
the Configuration Model trait. An example of such a technique is AppInit DLLs
Injection, which registers a library file into the Registry. On the other hand, the
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Windows Hook injection technique directly interfaces with system events and
does not require a persistent configuration stored on the disk.

Summary and Implications. Our systematization shows that different code
injection techniques take very different approaches to transmitting and executing
code. As such, each technique has its own set of characteristics that a detection
mechanism should take into account. Popular open-source sandboxes such as
Cuckoo [3] and CAPE [2] implement detection mechanisms using API call trac-
ing for most active techniques. They also include some more generic heuristics
for detecting transmissions from one process to another by looking for API calls
commonly associated with code injection (e.g., NtWriteVirtualMemory). How-
ever, the existence of passive techniques indicates that monitoring these common
API calls might be insufficient. Most passive techniques are either not included
in the signature database, or are not classified as a method of injection. Besides,
since passive techniques leverage features of the underlying OS to perform their
transmission and catalyst, the line between benign and injected memory pages
becomes significantly more blurred—both types of pages come from the same
origin and are allocated in the same way as normal pages. These important re-
alizations indicate that more injections might be adopted in the malware scene
than was previously thought. Thus, to uncover the landscape of code injection,
we perform an empirical study on the prevalence of the different techniques.

4 Classification Models

We leverage our taxonomy to classify code injection behaviors manifested by
malware. Since malware authors often obfuscate or pack their samples [14,34],
static analysis is not a feasible solution to recognize code injection. Thus, we
opt for an approach based on dynamic analysis, where we run a sample in a
sandbox and record all APIs the system calls. Observing the entire system as
opposed to a single process is crucial, as code injection is a procedure that
inherently involves multiple processes. Furthermore, there exist various methods
to spread malicious activity over multiple processes, including workloads that
involve code injection [15,33,47]. We therefore assume a trace that includes API
calls originating from any process running on the system.

Finding evidence of code injection in such an API call trace comes with two
main challenges. First, as was discussed in Section 3.1, many techniques use stan-
dard APIs such as NtAllocateVirtualMemory that are also commonly used by
programs for purposes other than code injection. Testing for their mere presence
would make a trace such as the one presented in Table 2a indistinguishable from
a trace where similar but unrelated system calls were recorded (Table 2b). The
second challenge relates to injection techniques typically involving multiple API
calls in sequence. Given the non-deterministic nature of concurrent systems, as
well as malware intentionally reordering independent steps [13], we cannot as-
sume a single order in which the APIs required for code injection are invoked by
the sample and appear in the trace.

To overcome these two challenges, we leverage and reimplement the insights
from previous work [35], and we build behavior graphs [16] for every code injec-
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NtOpenProcess(η, ...)

NtAllocateVirtualMemory(η, α, , σ, ...)

NtWriteVirtualMemory(η, β, ...)
β ∈ {α, ..., α+ σ}

NtOpenThread(θ, ...)

NtQueueApcThread(θ, , λ, ...)
λ ∈ {α, ..., α+ σ}

Fig. 1: A behavior graph implemented using a Petri net, modeling APC Shell
Injection. For brevity, we use underscores (‘ ’) and ellipses (‘...’) to discard irrel-
evant parameters. The accepting state is indicated by a double outline.

tion technique discussed in Section 3.1. These graphs are similar to dependency
graphs that precisely specify the behavior in terms of APIs that we expect to
be called when a certain code injection technique takes place. The specifications
include symbolic variables and predicates that encode the relationships between
the different API calls in terms of their arguments and return values. Besides,
the edges in the graph describe not the exact order, but the general interde-
pendence of each API call. This implicitly captures all possible permutations in
which these API calls may appear in the trace. Finally, similar to a normal state
machine, behavior graphs also contain accepting states. Once the evaluation of
the graph reaches such a state, the behavior is considered recognized.

To implement behavior graphs efficiently, we use a variation of Petri nets [45]
where we label the transitions with the API calls, symbolic variables and con-
straints. Figure 1 depicts an example of such a net that models the APC Shell
Injection technique. The behavior of the transmitter is reflected in the chain of
transition nodes matching on NtOpenProcess, NtAllocateVirtualMemory and
NtWriteVirtualMemory. Note that all three transitions use a symbolic variable
η for its first parameter (the process handle). This indicates that during the

Table 2: Two recorded API call traces. One sample implements APC Shell In-
jection and one sample uses similar but unrelated function calls.

(a) APC Shell Injection sample.

Time Observed API call
ti NtOpenProcess(0xA0, ...)

ti+1 NtAllocateVirtualMemory(0xA0, ...)

ti+2 NtWriteVirtualMemory(0xA0, ...)

(b) Unrelated sample.

Time Observed API call
tj NtOpenProcess(0xD8, ...)

tj+1 NtAllocateVirtualMemory(0x10, ...)

tj+2 NtWriteVirtualMemory(0x28, ...)
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examination of the sample, the observed first argument for all three system calls
must be equal. We also use extra constraints on the NtWriteVirtualMemory

transition to restrict the value of β to the interval {α, ..., α+ σ}. This indicates
that β should be a memory address that falls within memory that was previously
allocated in the victim process by a call to NtAllocateVirtualMemory. The use
of these constraints effectively solves the problem of distinguishing between the
traces shown in Tables 2a and 2b. Additionally, the transition node matching
on NtQueueApcThread illustrates how the result of two independent API calls
can be combined to express the catalyst of this technique, without assuming
a specific order in which these APIs were invoked. Here, θ represents a thread
handle obtained from a prior call to NtOpenThread, and λ is an entry point
address that is constrained to be within the allocated memory range. Since our
behavior graphs are implemented using Petri nets, the model does not progress
until both the NtOpenThread and NtWriteVirtualMemory transitions have in-
dependently produced a result that is consistent with the constraints placed on
the NtQueueApcThread call.

5 Framework Architecture

Leveraging behavior graphs, we model each injection technique presented in
Section 3 and we build a framework that automatically recognizes the adoption of
code injection in a given sample and specifically classifies the adopted techniques.
Figure 2 depicts an overview of our framework, consisting of two components.
The Analyzer acts as a front-end and is implemented in ∼6,000 lines of C#
code. It takes samples as input and uploads them to an isolated Examination
Environment. The Examination Environment executes each sample in a Virtual
Machine (VM), and records an API call trace which is sent back to the Analyzer.
The Analyzer then runs this trace through our behavior graphs, and reports back
which of the code injection behaviors were recognized.

Our framework is built on top of DRAKVUF [32], which provides us with
a virtualization-based, black-box binary analysis system that allows for system-
wide monitoring of API calls. Given the nature of code injection techniques,
this is a crucial requirement for us. Besides, DRAKVUF does not require an
agent within the VM, which vastly reduces the risk of being fingerprinted by
evasive samples. We use Windows 10 as the guest OS as it is the most market-
dominant OS at the time of conducting this research [55]. We disable some

Analyzer

Behavior
Graphs

Task Queue

C : \samples

Examination
Environment

Monitor

Virtual
Machine

Detection Report

Samples Sample

API call
Trace

Final
Markings

Fig. 2: Framework architecture overview.
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background services that may unnecessarily prevent the samples from running
or introduce artifacts in the traces, and provide it with (limited) access to the
Internet. Following the community practices [51], we let malware run for a limited
time, deny potentially harmful traffic (e.g., spam), and deploy our framework
on a separate sub-network where no production machines are connected. After
each analysis, we roll back the VM to a clean snapshot to revert side effects that
malware might introduce. This also prevents potential denial of service attempts.
Our setup was approved by our Ethics Committee.

6 Experimental Results

We test our automated framework to assess its capabilities to classify code injec-
tion techniques and perform a large-scale measurement of the general prevalence
of code injection in malware and the distribution of the different techniques.

6.1 Datasets and Setup

To verify that our measurement framework correctly classifies the studied injec-
tion techniques, we first assembled a ground truth dataset of 63 code injection
samples covering all the studied techniques. Our dataset contains both samples
that we implemented ourselves, as well as handpicked open-source implementa-
tions and real-world samples. We also include 20 malicious samples that do not
adopt code injection, as well as 1,147 benign applications. The benign samples in-
clude 976 executables from C:\Windows\System32 and C:\Windows\SysWOW64,
as well as 171 popular portable applications, e.g., VLC Media Player and Win-
SCP. For our measurement, we collected 47,128 random samples from VirusTo-
tal [57] flagged by at least three AV engines (as suggested by related work [61])
and spread over 2017–2021. We then used AVClass [53] to assign samples to
family labels. Table 3 describes the resulting dataset and its family distribution.

Analysis Timeout. Around 65% of malware runs completely in less than 2,
and 81% does not need longer than 10 minutes [31]. Since injection is likely one
of the first performed actions, we pick 6 minutes as a time limit per sample.

6.2 Framework Assessment

Table 4 shows an overview of the classification capabilities of our framework
on the ground truth dataset, making a distinction between picking up on the
presence of code injection and exactly classifying the techniques. In the following,
we will discuss the performance of our framework in more detail.

Classification Capabilities. Our framework successfully recognizes the usage
of code injection for all techniques, except for IAT Hooking. While this technique
is destructive, we cannot recognize these injections due to behavior graphs not
being able to test for faulty or absent behavior as a result of rerouting an API call.
Furthermore, this technique only requires two calls to NtWriteVirtualMemory

for both transmitting and preparing the catalyst respectively. While we can ob-
serve these calls, we cannot distinguish between the ones that place hooks and
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Table 3: Malware family distribution in our dataset. The columns indicate the
sample count and the fraction of positive samples.

Total 2017 2018 2019 2020 2021
Family Cnt. Pos. Cnt. Pos. Cnt. Pos. Cnt. Pos. Cnt. Pos. Cnt. Pos.

virlock 5,783 0.5% 111 1.8% 131 0.8% 301 9.3% 5,057 0.0% 183 0.0%
dinwod 3,180 0.1% 2,763 0.0% 71 2.8% 71 0.0% 72 0.0% 203 0.0%
sivis 1,066 0.0% 12 0.0% 86 0.0% 71 0.0% 19 0.0% 878 0.0%
berbew 862 99.0% 144 100.0% 12 100.0% 283 100.0% 105 96.2% 318 98.4%
upatre 862 0.2% 190 1.1% 209 0.0% 187 0.0% 189 0.0% 87 0.0%
virut 861 1.4% 200 5.0% 138 0.0% 486 0.2% 33 3.0% 4 0.0%
delf 843 5.8% 31 3.2% 52 3.9% 189 13.2% 136 15.4% 435 0.0%
kolabc 837 0.0% 2 0.0% 12 0.0% 8 0.0% 0 0.0% 815 0.0%
vobfus 816 1.2% 156 0.6% 225 1.3% 41 9.8% 14 0.0% 380 0.5%
wapomi 738 0.4% 318 0.9% 63 0.0% 17 0.0% 339 0.0% 1 0.0%
wabot 596 0.0% 377 0.0% 50 0.0% 117 0.0% 43 0.0% 9 0.0%
vindor 594 0.0% 32 0.0% 36 0.0% 37 0.0% 0 0.0% 489 0.0%
allaple 567 0.2% 193 0.5% 88 0.0% 276 0.0% 9 0.0% 1 0.0%
gator 530 0.0% 63 0.0% 2 0.0% 103 0.0% 34 0.0% 328 0.0%
hematite 470 0.0% 15 0.0% 197 0.0% 230 0.0% 26 0.0% 2 0.0%
vtflooder 462 0.4% 137 1.5% 32 0.0% 58 0.0% 23 0.0% 212 0.0%
shipup 428 88.8% 58 94.8% 251 90.0% 59 86.4% 55 81.8% 5 60.0%
gepys 418 89.2% 27 88.9% 277 89.2% 67 82.1% 40 100.0% 7 100.0%

Other 27,215 9.4% 5395 11.1% 6259 9.5% 6424 12.2% 3498 8.3% 5,642 4.9%

Total 47,128 9.1% 10,224 8.3% 8,191 13.4% 9,025 13.6% 9,692 5.1% 9,999 6.1%

inject other types of memory. Note that, this does not mean that our frame-
work is blind to destructive techniques. For example, in Process Hollowing, the
catalyst always calls NtSetContextThread and NtResumeThread, whose argu-
ments can be traced back to previously observed transmitter API calls, and thus
can be reliably tested for. However, our framework sometimes confuses it with
Thread Hijacking, as many hollowing implementations are nearly identical to it,
and only include an extra call to NtUnmapViewOfSection to “hollow” out the
victim process before the payload is transmitted. Again, while behavior graphs
can encode this call for Process Hollowing, they cannot encode its absence for
Thread Hijacking, causing the latter to be sometimes incorrectly identified as
well. Therefore, if both techniques were detected in a sample, we assume that
only Process Hollowing was implemented instead.

For three techniques (PE Injection, Reflective DLL Injection, and Memory
Module Injection), our framework can recognize the presence of an injection,
but not exactly identify the specific technique. The limited granularity of the
API call trace causes some techniques to have a near-identical pattern of API
calls for their transmitters and catalysts. In this case, the three methods become
indistinguishable from Shellcode Injection, and can therefore only be classified
as such. This is a reasonable compromise, as, since the only difference between
these techniques is the format of the actual injected memory, they can be seen
as a special case of injected shellcode. Thus, while this classification does not
completely reflect the exact exhibited technique, it is not an incorrect classifi-
cation either. All these techniques belong to the sample class in our taxonomy.
We, therefore, refer to this group of injections as Generic Shell Injection.



14 Jerre Starink, Marieke Huisman, Andreas Peter, Andrea Continella

Table 4: Overview of recognized techniques. Match: An injection was recognized.
Exact : The correct technique was identified. Asterisk (*): Technique may be
confused with another.

Technique Match Exact

Process Hollowing ✓ ✓
Thread Hijacking ✓ ✓*

IAT Hooking
CTray Hooking ✓ ✓

APC Shell Injection ✓ ✓
APC DLL Injection ✓ ✓
Shellcode Injection ✓ ✓

PE Injection ✓
Reflective DLL Injection ✓

Memory Module Injection ✓
Classic DLL Injection ✓ ✓

Shim Injection ✓ ✓
Image File Execution Options ✓ ✓

AppInit DLLs Injection ✓ ✓
AppCertDLLs Injection ✓ ✓

COM Hijacking ✓ ✓
Windows Hook Injection ✓ ✓

Performance Metrics. All samples that do not implement code injection were
correctly marked negative by our framework. The 1,147 benign Windows applica-
tions were also marked negative, except for one System32 program. This program
(osk.exe) implements an on-screen keyboard and simulates key presses when
the user clicks the virtual key buttons. We found that it indeed uses Windows
Hook Injection to send the simulated key presses to other processes. This con-
firms that code injection is also used for legitimate purposes, emphasizing that
the use of code injection is insufficient for classifying a sample as malicious.

Our framework has a true positive rate of 87.50% and an F1-score of 93.0% on
the samples that implement code injection. The false negatives are mainly caused
by some samples not activating themselves during the analyses. In particular,
implementations of Windows Hook Injection are susceptible since their catalyst
sometimes requires user input (e.g., key presses) to run the payload. Note that,
this is a limitation of any dynamic analysis-based examination environment.

6.3 Prevalence Measurement

Now that we assessed that the results of our framework are reliable, we can mea-
sure the adoption of code injection in the malware scene. Table 3 summarizes
the observed prevalence of code injection within our dataset of 47,128 samples.
We identified a total of 4,278 samples (9.1%) that perform at least one type of
code injection. Note that, as we discuss in Section 7, this number represents a
lower bound. To further test whether the classification made by our framework
is consistent, we picked 20 positive samples covering all the detected techniques
and 20 negative samples, and we manually verified our results. To the best of
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our reversing effort, all the classifications made by our framework were correct.
Naturally, this does not exclude the presence of undetected false negatives (Sec-
tion 8). Overall, the fraction of samples observed to adopt code injection varies
from 5.1% to 13.6% per year. While this fluctuation does not seem to follow
any particular motif, the distribution of the implemented techniques over time
reveals interesting patterns.

Distribution of Techniques. Table 5 and Figure 3 show the distribution of
the different adopted techniques, and Table 6 shows the generally observed pref-
erence of techniques in each of the years 2017–2021. Note that, the percentages
do not add up to 100% as some samples implement multiple code injection tech-
niques. Specifically, 94.65% of the positive samples in our dataset manifested
one injection technique, 5.26% manifested two techniques, and four samples ex-
hibited three techniques.

We can see that Process Hollowing and Generic Shell Injection are among the
more popular choices of malware authors. Since these are traditional methods,
and the majority of malware authors tend to copy code from others [17], this
is an expected result. However, the popularity of these techniques is decreasing,
while others are rising. If we aggregate all techniques by their class, as shown in
Table 7, we can see that many of these rising techniques are Configuration-Based
injections. Most notably, in 2018, the AppInit DLLs Injection technique almost
overcame all active techniques combined on its own, and in 2020, the aggregation
of all Configuration-Based techniques convincingly surpassed them.

Table 5: Observed general prevalence and distribution of code injection tech-
niques in the sample sets from 2017 to 2021.

Technique 2017 2018 2019 2020 2021 Total

Process Hollow 230 27.2% 260 23.6% 276 22.5% 92 18.5% 92 15.2% 950 22.2%
Thread Hijack 87 10.3% 123 11.2% 78 6.4% 12 2.4% 52 8.6% 352 8.2%
CTray Hook 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
APC Shell 2 0.2% 13 1.2% 1 0.1% 2 0.4% 3 0.5% 21 0.5%
APC DLL 0 0.0% 0 0.0% 1 0.1% 1 0.2% 0 0.0% 2 0.1%
Generic Shell 174 20.6% 138 12.6% 218 17.7% 83 16.7% 37 6.1% 650 15.2%
Classic DLL 2 0.2% 4 0.4% 70 5.7% 3 0.6% 0 0.0% 79 1.9%
Shim 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
IFEO 86 10.2% 25 2.3% 61 5.0% 75 15.1% 80 13.2% 327 7.6%
AppInit DLLs 86 10.2% 519 47.2% 170 13.8% 137 27.5% 19 3.1% 931 21.8%
AppCertDLLs 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
COM 240 28.4% 69 6.3% 406 33.0% 111 22.3% 341 56.4% 1167 27.3%
Windows Hook 0 0.0% 4 0.4% 21 1.7% 7 1.4% 0 0.0% 32 0.8%

Total 846 8.3% 1100 13.4% 1229 13.6% 498 5.1% 605 6.1% 4278 9.1%

Since samples within a family often employ very similar behaviors [10], and
families differ in size, some techniques might be overrepresented in Figure 3.
Thus, Figure 4 presents a different view of the data, where all samples within the
same family are considered as one instead. If one sample within a family performs
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Fig. 3: Distribution of code injection techniques in malware, 2017 – 2021.
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Fig. 4: Distribution of code injection techniques exhibited by malware in our
dataset, normalized by malware family.

a given type of code injection, then this family is considered to implement this
technique. We see Process Hollowing dominating the market, closely followed by
Thread Hijacking. We also see that the adoption rates of passive techniques such
as AppInit DLLs Injection are reduced, but remain significant and are increasing
over the years.

7 Discussion and Takeaways

Our study shed light on the understanding and adoption of code injection and
provided important insights.

Trend Shift in the Adopted Techniques. In Section 3 we presented the
existence of code injection techniques that can take a very different high-level
approach from traditional methods. Examining our measurements, we conclude
this is not merely theoretical. In fact, Figure 3 and Table 7 suggest that the
fraction of malware using passive techniques is growing towards the majority.
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Table 6: General preference of technique adopted by malware families (AppInit :
AppInit DLLs Injection, COM : COM Hijacking, Hollow : Process Hollowing,
IFEO : Image File Execution Options, Shell : Generic Shellcode Injection, Thread :
Thread Hijacking, and WHook : Windows Hook Injection).

Family 2017 2018 2019 2020 2021 Total

virlock COM Shell Shell Shell
dinwod COM COM COM
berbew COM COM COM COM COM COM
upatre COM COM
virut IFEO Shell WinHook IFEO
delf Thread Thread Hollow Hollow Hollow
vobfus Hollow Hollow Hollow Hollow Hollow
wapomi COM COM
allaple COM COM
vtflooder COM COM
shipup AppInit AppInit AppInit AppInit AppInit AppInit
gepys AppInit AppInit AppInit AppInit AppInit AppInit

Other Hollow Hollow Hollow Shell Hollow Hollow

Total COM AppInit COM AppInit COM COM

Table 7: Distribution of classes of code injection techniques exhibited by malware
in the sample sets from 2017 to 2021.

Class 2017 2018 2019 2020 2021 Total

Active 495 58.5% 538 48.9% 644 52.4% 193 38.8% 184 30.4% 2054 48.0%
Intrusive 319 37.7% 396 36.0% 356 29.0% 107 21.5% 147 24.3% 1325 31.0%
Destructive 317 37.5% 383 34.8% 354 28.8% 104 20.9% 144 23.8% 1302 30.4%
Non-Intr. 176 20.8% 142 12.9% 288 23.4% 86 17.3% 37 6.1% 729 17.0%
Passive 412 48.7% 617 56.1% 658 53.5% 330 66.3% 440 72.7% 2457 57.4%
Config. 412 48.7% 613 55.7% 637 51.8% 323 64.9% 440 72.7% 2425 56.7%

This is an indication that malware developers have started to shift strategies
for detection avoidance, and adopted techniques that do not depend on calls
to NtWriteVirtualMemory. Another explanation could be that these new tech-
niques also serve purposes other than running in the context of another process.
For example, AppInit Dll Injection tricks Windows into loading a DLL in new
processes by changing a setting in the Registry. Since this setting is stored on
the disk, this can be used for persistence.

Adoption of Unconventional Techniques. Additionally, the results in Fig-
ure 4 show that this trend shift is not only happening for large malware families
but also started to appear in the bulk of smaller families as well. While most
families still use Process Hollowing, we see an increase in the adoption rate of all
passive techniques over the years. This further shows that this shift towards less
traditional methods is happening. Process Hollowing is one of the oldest and most
known techniques, which analysis systems can effectively track, and our results
suggest that, for this reason, attackers now tend to disregard its adoption.

Code Injection among Families. From Table 3 we can see the positive rate
of code injection techniques within a single family is typically either very low
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(< 2, 0%) or very high (> 80, 0%). This indicates that if a sample implements a
code injection technique, then it is very likely that its entire family implements
some form of code injection, and can thus be seen as a feature that a family can
be characterized by. However, we also see that malware families switch between
techniques over time (Table 6), and as such, the specifically adopted techniques
are not enough to identify a family alone.

Insufficiency of Common Heuristics. A trend shift has important implica-
tions from a defender’s perspective. The main insight is that standard heuris-
tics, e.g., looking for artifacts such as suspicious memory pages or API calls to
NtWriteVirtualMemory (both commonly used in state-of-the-art [3,7,9,21,26,59]),
are insufficient for reliably detecting an entire class of code injections. This
means that endpoint protection solutions need more sophisticated mechanisms
to recognize and track emerging techniques (i.e., passive techniques).

Need for Combination of Behavioral Models. As discussed in Section 6,
behavior graphs based on API/system calls cannot recognize IAT Hooking in-
jections. Since this technique does not depend on APIs to activate the injected
payload, signatures that look for evidence in an API trace cannot find any. This
suggests that sandbox developers and future researchers should combine multiple
approaches to find evidence of the use of code injection, or use strategies that
can track behavior on a lower level, e.g., the approach suggested in [30].

Implications for Future Studies. Our results directly affect future research
on malware analysis. Studies based on dynamic analysis are bound to miss signif-
icant portions of malicious behaviors if they do not comprehensively account for
the variety of code injection techniques, including passive techniques. Further-
more, while code injection is significantly more present in malware, injection is
also used by legitimate applications for benign purposes (as seen in the osk.exe
example). Thus, although observing code injection is a strong indicator of suspi-
cious behaviors, it cannot be solely adopted as a criterion for malware detection.

Adoption Rate. Finally, it is important to mention that the results of our
measurement are likely a lower bound on the actual adoption of code injection,
which further stresses the importance of our insights. While we took some coun-
termeasures to mitigate evasion (e.g., using a stealthy, agent-less instrumentation
environment), addressing evasive malware is an undecidable problem, and it is
thus possible that evasive samples did not manifest their behavior (i.e., code
injection) during our analyses. As a consequence, the number of samples im-
plementing code injection is likely higher than what was observed in our study,
further stressing that future research should carefully take code injection into
account to avoid biases when performing malware behavior analysis.

8 Limitations and Future Work

Our study does not come without limitations. First, while the theoretical model
of behavior graphs is fairly generalized, our implementation might be too spe-
cific to recognize mutations in the techniques. This is especially the case with
Configuration-based techniques, as they access specific keys in the Registry, and



Understanding and Measuring Code Injection in Windows Malware 19

thus require matching on API calls with specific paths. While we can match those
paths, this does not encapsulate the core characteristic of abusing the settings
of the OS. If another technique uses a different key, a new model is required.

A similar limitation can be found in the use of exact system calls in behavior
graphs. This has the downside that different but semantically equivalent sets of
API calls require multiple transition nodes to be added. This could be improved
by adding a preprocessing phase that lifts API calls in the trace into event classes
(e.g., similar to [35]), and then using these classes of events in our transition
nodes instead. Alternatively, behavior graphs could be extended to allow for
matching on multiple different types of APIs within a single transition node, such
that these equivalence classes could be directly built into the graphs themselves.
Both options would allow the graph to match a higher abstraction of events that
the sandbox observes while avoiding additional structural complexity.

Evasion. Although our attempts to mitigate evasion (e.g., using a stealthy,
agent-less instrumentation environment), and despite our goal is not to imple-
ment a detection system, malware could evade our framework and, thus, limit our
measurement. First, behavior graphs are still a form of signature-based classifi-
cation, making new unknown techniques invisible to our framework. This might
also mean that the IAT hooking technique could be widely adopted but remained
unnoticed in our observations (Section 6.2). Besides, malware that strictly de-
pends on a remote C2 server might not exhibit its behavior if this server is
offline. Furthermore, samples that require some form of interaction (e.g., Trojan
Horses embedded in a GUI-based application) would not execute properly in
our examination environment. Finally, samples might not execute code injection
within our analysis timeout (although the majority of samples run within our
limit [31]) or might still recognize our analysis environment [24,13,32]. Nonethe-
less, the potential presence of evasive samples could imply that code injection is
more frequent than what we observed, further stressing our insights.

9 Related Work

Code Injection Classification. The idea of identifying common characteristics
and placing code injection techniques in classes is a relatively new concept.
Barabosch et al. introduced two forms of injections and execution models that
are similar to our process- and thread model [11]. However, their focus is on
threads only, leaving out a whole class of techniques. As discussed in Section 3,
there exist techniques that do not create or manipulate threads directly.

Behavior Modeling. Similar to ours, most automated systems for behavior
analysis rely on dynamic analysis [3,12,32]. While these systems have been very
thorough with their examination, they stop at providing basic interpretations.
Martignoni et al. refer to this as the semantic gap [35], and also address this
with behavior graphs. However, their approach relies on taint-analysis within
a single process. Thus, behaviors distributed over multiple processes cannot be
modeled, a crucial element in the context of code injection.

Various methods exist to detect stealthy malware by the means of anomaly
detection [52,58]. One limitation of adopting such a strategy is that it requires
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a database of normal behavior profiles for every potential victim process. In the
case of code injection, this task becomes infeasible, as many victim processes
(such as explorer.exe) are either closed source or too complex to model in a
single automaton or graph. Besides, anomalies are at most a weak indicator for
code injection, as there are other ways to let benign processes behave abnormally.

Code Injection Identification. Barabosch et al. proposed a method for detect-
ing code injection leveraging the honeypot paradigm [10], by imitating attractive
victim processes and monitoring for anomalies. However, this heavily relies on
malware selecting these decoy processes as victims. Furthermore, it also faces
the problem of not being able to monitor child processes, making popular tech-
niques such as Process Hollowing undetectable. As an alternative approach, they
also proposed to dump the system’s memory and search for suspicious memory
pages [9]. However, this assumes that benign pages can be distinguished from
injected ones, which can be difficult for passive techniques. Furthermore, only
some states of a machine are captured, requiring the victim process to be alive
upon taking snapshots if we want to find any evidence. Finally, Korczynski et
al. presented an approach based on system-wide taint-analysis to detect the
presence of code injection and identify the responsible instructions [30]. Unfor-
tunately, all these approaches are not applicable to our measurement framework,
as they do not distinguish and classify different injection techniques, which is
essential to perform an in-depth study like ours. Proprietary sandboxes, such as
ANY.RUN [1] and Joe Sandbox [4], provide indicators of the occurrence of code
injection. However, they do not recognize the specific techniques and do not pro-
vide information about their analysis approach, as they are fully closed-source.

10 Conclusion

We conducted a systematic and empirical study on code injection techniques
and proposed a taxonomy to group such techniques into classes. Leveraging our
taxonomy, we implemented a framework to classify the adoption of code injection
in malware samples. We used our framework to collect empirical evidence on the
prevalence of code injection, as well as the distribution of the adopted techniques,
in the malware scene from 2017 to 2021. Our empirical results show that at least
9.1% of all examined samples perform code injection Besides, we showed a shift
in trend: More traditional techniques are getting less used, while new, previously
overlooked techniques are becoming more prevalent. Finally, our study provided
important insights and takeaways for future research in the field of malware
behavior analysis.
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