
DIANE: Identifying Fuzzing Triggers in Apps to
Generate Under-constrained Inputs for IoT Devices

Nilo Redini∗, Andrea Continella†, Dipanjan Das∗, Giulio De Pasquale∗, Noah Spahn∗, Aravind Machiry‡,
Antonio Bianchi‡, Christopher Kruegel∗, and Giovanni Vigna∗

∗UC Santa Barbara †University of Twente ‡Purdue University
{nredini, dipanjan, peperunas, ncs, chris, vigna}@cs.ucsb.edu
a.continella@utwente.nl, {amachiry, antoniob}@purdue.edu

Abstract—Internet of Things (IoT) devices have rooted themselves
in the everyday life of billions of people. Thus, researchers have
applied automated bug finding techniques to improve their overall
security. However, due to the difficulties in extracting and emulating
custom firmware, black-box fuzzing is often the only viable analysis
option. Unfortunately, this solution mostly produces invalid inputs,
which are quickly discarded by the targeted IoT device and do not
penetrate its code. Another proposed approach is to leverage the
companion app (i.e., the mobile app typically used to control an IoT
device) to generate well-structured fuzzing inputs. Unfortunately,
the existing solutions produce fuzzing inputs that are constrained
by app-side validation code, thus significantly limiting the range of
discovered vulnerabilities.

In this paper, we propose a novel approach that overcomes these
limitations. Our key observation is that there exist functions inside
the companion app that can be used to generate optimal (i.e., valid
yet under-constrained) fuzzing inputs. Such functions, which we
call fuzzing triggers, are executed before any data-transforming
functions (e.g., network serialization), but after the input validation
code. Consequently, they generate inputs that are not constrained by
app-side sanitization code, and, at the same time, are not discarded
by the analyzed IoT device due to their invalid format. We design
and develop DIANE, a tool that combines static and dynamic analysis
to find fuzzing triggers in Android companion apps, and then uses
them to fuzz IoT devices automatically. We use DIANE to analyze 11
popular IoT devices, and identify 11 bugs, 9 of which are zero days.
Our results also show that without using fuzzing triggers, it is not
possible to generate bug-triggering inputs for many devices.

I. INTRODUCTION

Internet of Things (IoT) devices have become part of the
everyday life of billions of people [53], [64]. Unfortunately, very
much like their popularity, the number of vulnerabilities found in
these devices has increased as well. In both 2019 and 2018, security
researchers published more than 150 vulnerabilities affecting
IoT devices [5], [6], [7]. This represented an increment of 15%
compared to 2017, and an increase of 115% compared to 2016.

These vulnerabilities reside in the software (or firmware)
running on these IoT devices. As several studies have shown, this
software often contains implementation flaws, which attackers can
exploit to gain control of a device, and cause significant disruption
for end-users [17], [18], [27], [48], [59]. One prominent example
is the Mirai botnet [51], which infected hundreds of thousands of
IoT devices using a collection of vulnerabilities.

In recent years, researchers have developed novel techniques
to automatically find vulnerabilities in IoT devices by analyzing
their firmware [24], [31], [32], [70], [71], [84]. These approaches,

however, present several limitations. First, obtaining the firmware
running on an IoT device is difficult: Extracting the firmware from
a device typically requires ad hoc solutions, and vendors hardly
make their software publicly available [70]. Second, unpacking
and analyzing a firmware sample is a challenging task: Firmware
samples may be available in a variety of formats, and may run on
several different architectures, often undocumented. Furthermore,
most IoT devices are shipped with disabled hardware debugging
capabilities [25], [55], [61], ruling out analyses based on dynamic
instrumentation.

For these reasons, security researchers typically have to use
black-box approaches when vetting the security of IoT devices.
However, the existing black-box approaches [2], [12], [14] require
knowledge about the data format accepted by the device under
analysis. Consequently, given the heterogeneity and lack of
documentation of the protocols adopted by IoT devices, these
approaches are not readily applicable.

However, most IoT devices have companion apps [82], [88]
(i.e., mobile apps used to interact with the device), which
contain the necessary mechanism to generate valid inputs for
the corresponding device. Based on this observation, Chen et
al. [25] proposed a tool, IoTFuzzer, which fuzzes IoT devices
by leveraging their companion apps. IoTFuzzer analyzes the
companion app and retrieves all the paths connecting the app’s
User Interface (UI) to either a network-related method or a
data-encoding method. Then, IoTFuzzer fuzzes the parameters
of the first function that handles user input along these paths, thus
generating valid fuzzing inputs for the IoT device.

While this approach yields better results than randomly fuzzing
the data directly sent to the IoT device over the network, in
practice, it consists in mutating variables immediately after they
are fetched from the UI, before the app performs any input
validation or data processing. Consequently, the effectiveness
of IoTFuzzer suffers substantially when the app sanitizes the
provided input—our experiments (Section IV-E) demonstrate that
51% of IoT companion apps perform app-side input validation.
Indeed, recent research showed that mobile apps often perform
input validation to trigger different behaviors [86]. For these
reasons, IoTFuzzer’s approach cannot produce under-constrained
(i.e., not affected by app-side sanitization) yet well-structured
(i.e., accepted by the IoT device) fuzzing inputs, which can reach
deeper code locations, uncovering more vulnerabilities.

Our Approach. In this paper, we propose and implement an
approach that leverages the companion app to generate inputs for
the analyzed device. To overcome IoTFuzzer’s limitations, we
precisely determine (and fuzz) optimal code locations within the
companion app, which produce valid yet under-constrained inputs
for the IoT device.

Our approach considers the app’s execution as a sequence of
functions that transform the data introduced by the user (e.g.,
through the app’s UI) into network data. Our intuition is that the
first functions within this sequence typically convert the user inputs
into internal data structures, generating data that is constrained by
app-side validation. In contrast, the last functions in this sequence
adequately encode the user data, serializing it on the network.

The novelty of our approach is to fuzz an IoT device by
invoking specific functions within its companion app. We call these
functions fuzzing triggers. When invoked, fuzzing triggers generate
inputs that are not constrained by app-side validation, and, at the
same time, are well-structured, so that they are not immediately
discarded by the fuzzed IoT device.

Our approach uses a novel combination of static and dynamic
analysis and performs two main steps: i) fuzzing triggers identi-
fication, and ii) fuzzing. To do this, first, we automatically retrieve
those functions within an app that send data to the IoT device.
Then, for each of these functions, we build an inter-procedural
backward slice, which we dynamically analyze to ultimately
identify fuzzing triggers. Finally, we use dynamic instrumentation
to repeatedly invoke these fuzzing triggers using different
arguments. This generates a stream of network data that fuzzes the
functionality of the IoT device, to ultimately spot vulnerabilities.

We implemented our approach in a tool, called DIANE, and
ran it against a representative set of 11 popular IoT devices of
different types and from different manufacturers. DIANE correctly
identified fuzzing triggers, and successfully identified 11 bugs, 9
of which are previously unknown vulnerabilities. Additionally, we
compared DIANE with IoTFuzzer, showing that the identification
of fuzzing triggers is essential to generate under-constrained,
crash-inducing inputs.

In summary, we make the following contributions:

• We propose an approach to identify fuzzing triggers, which
are functions that, in the app’s control flow, are located
between the app-side validation logic and the data-encoding
functions. When executed, the identified fuzzing triggers
produce valid yet under-constrained inputs, enabling effective
fuzzing of IoT devices.

• We leverage our approach to implement DIANE, an
automated black-box fuzzer for IoT devices.

• We evaluate our tool against 11 popular, real-world IoT
devices. In our experiments, we show that by identifying
fuzzing triggers and using them to generate inputs for the
analyzed devices, we can effectively discover vulnerabilities.
Specifically, we found 11 vulnerabilities in 5 different
devices, 9 of which were previously unknown.

• We show that, for a majority of IoT devices and companion
apps, identifying and leveraging fuzzing triggers is essential
to generate bug-triggering inputs.

1 // Android Java Code
2 public

int PTZ(String adminPwd, int x, int y, int z){
3 //..
4 byte data[] = MsgPtzControlReq(x, y, z);
5 if (!adminPwd.contains("&") && // Input
6 !adminPwd.contains("'")){ // validation
7 SendMsg(adminPwd, camId, data);
8 }
9 }

10
11 public static native int SendMsg(String

adminPwd, String camId, byte[] data);
12
13 // Java Native Interface
14 int

Java_SendMsg(char* pwd, char* cam_id, Msg* msg){
15 prepare_msg(pwd, cam_id, msg);
16 notify_msg(msg);
17 }
18 // JNI - Different thread
19 void sender() {
20 Msg* msg = get_message()
21 send_to_device(msg);
22 }

Fig. 1. Snippet of code that implements a sanity check on the admin
password, and uses the Java Native Interface to send messages to the
device. The example is based on the Wansview app in our dataset.

In the spirit of open science, we make the datasets and
the code developed for this work publicly available:
https://github.com/ucsb-seclab/diane.

II. MOTIVATION

To motivate our approach and exemplify the challenges that
it addresses, consider the snippet of code in Figure 1. The app
utilizes the method PTZ (Line 2) to send position commands (i.e.,
spatial coordinates) to an IoT camera. To do this, PTZ invokes
the native function SendMsg (Line 7), which prepares the data
to be sent (Line 15), and stores it into a shared buffer (Line 16). In
parallel, another thread reads the data from the same buffer (Line
20), and sends commands to the device (Line 21). Notice that the
IoT camera requires a password to authenticate commands, and
the app performs a sanity check on the password string (Lines 5
and 6). This example shows two crucial challenges that have to
be faced when generating IoT inputs from the companion apps.

First, apps communicate with IoT devices using structured
data, encoded in either known protocols (e.g., HTTP), or custom
protocols defined by the vendor. Messages that do not respect
the expected format are immediately discarded by the device, and,
consequently, cannot trigger deep bugs in its code. In the example,
the app uses the function prepare_msg (Line 15) to create a
correctly structured message.

Second, while it is crucial to generate correctly structured
inputs, an effective approach has to avoid generating inputs that
are constrained by app-side validation code. In the example,
the function PTZ (Line 2) forbids the password to contain the
characters & and '. However, the presence of these characters
may be crucial in generating crash-triggering fuzzing inputs.

The insight from the authors of IoTFuzzer is to leverage the
companion app to generate fuzzing inputs in a format that the
device can process. This means that the input values need to be
mutated before the app “packages” and sends them to the device.
While this is true, our crucial insight is that the mutation indeed

2

https://github.com/ucsb-seclab/diane

has to occur before the app packages the inputs, but also after the
app performs any input validation. Note that, with the expression
app-side validation we refer to all types of constraints that the app
imposes on the data sent to an IoT device. These constraints might
be imposed by typical sanitization checks (e.g., limiting the length
of a string) or by parameters hard-coded in the generated request
(e.g., hard-coded attributes in a JSON object).

Our work fills this gap: We identify strategic execution points
that produce inputs that are not affected by the constraints that the
app logic imposes. To achieve this goal, we analyze an IoT device
companion app, and focus on identifying effective fuzzing triggers:
Functions that, when used as entry points for fuzzing, maximize
the amount of unique code exercised on the device’s firmware,
thus potentially triggering security-relevant bugs. Consider, as
an example, the app’s execution as a sequence of functions that
receive data from the UI and send it over the network. On the one
hand, if the fuzzed function is too close to the UI, the fuzzing is
ineffective due to app-side validation that might be present later
in the execution. On the other hand, picking a function too close to
the point where data is put onto the network might be ineffective.
In fact, some protocol-specific data transformations applied early
in the execution would be skipped, causing the generated inputs to
be dropped by the IoT device. In Figure 1, the function sendMsg
represents a fuzzing trigger.

Our approach identifies these fuzzing triggers automatically,
relying on a combination of dynamic and static analyses, without
the need for any a priori knowledge about neither the firmware
nor the network protocol used by the analyzed IoT device.
Additionally, previous work [25] relies on specific sources of
inputs (e.g., text boxes in the app’s UI) to bootstrap its analysis,
and does not mutate data generated from unspecified sources (e.g.,
firmware updates through the companion app triggered by a timer).
Our bottom-up approach (explained in Section III) does not make
any assumptions on input sources and is, therefore, more generic.

The example we discussed in this section is the simplified
version of the code implemented in the Wansview app. We also
note that app-side validation is prevalent in real-world apps, and
that the challenges we described do not only apply to this example.

III. APPROACH

While our goal is to find bugs in IoT devices, given the general
unavailability of their firmware, we focus our analysis on their
companion apps. Our key intuition is to identify and use, within
these companion apps, those functions that optimally produce
inputs for the analyzed IoT devices. These optimal functions
effectively produce inputs that are valid yet under-constrained.

Automatically identifying these functions is a challenging task
because the complexity of the companion apps, the usage of native
code, and the presence of multiple threads rule out approaches
based entirely on static analysis. Thus, we propose a novel analysis
pipeline built on top of four different analyses: i) static call-graph
analysis, ii) network traffic analysis, iii) static data-flow analysis,
and iv) dynamic analysis of the function arguments.

Our approach does not make any assumption on how the app’s
user interface influences the data sent to the controlled IoT device,
and it avoids app-side sanitization on the generated data. Our

analysis does not start by considering UI-processing functions,
but, on the contrary, uses a “bottom-up” approach. Specifically, we
start from identifying low-level functions that potentially generate
network traffic, and then we progressively move “upward” in
the app call-graph (i.e., from low-level networking functions to
high-level UI-processing ones). This approach allows us to identify
functions that produce valid yet under-constrained inputs, skipping
all the sanitization checks performed by data-processing functions.
We then use these functions, which we call fuzzing triggers, to
efficiently fuzz the analyzed IoT device, while monitoring it for
anomalous behaviors, which indicate when a bug is triggered.

We implement our approach in a tool named DIANE, depicted
in Figure 2. DIANE works in two main phases: Fuzzing Trigger
Identification, and Fuzzing. In the Fuzzing Trigger Identification
phase, DIANE identifies optimal functions within the companion
app, that, when invoked, generate under-constrained well-
structured inputs for the analyzed device. Then, during the Fuzzing
phase, these functions are used to generate data that is sent to the
analyzed device using a local network connection.

Our approach is independent of the network medium used by
the analyzed app. We apply it to apps communicating with their
related IoT device both over WiFi and Bluetooth (Appendix B).
DIANE fuzzes IoT devices that receive commands through a
local connection between the device and the companion app.
Though some devices might receive commands from cloud-based
endpoints, research showed that the vast majority of them (95.56%)
also allow some form of local communication (e.g., during the
device setup phase) [17].

A. Fuzzing Trigger Identification

Intuitively, fuzzing triggers are functions that, in the app’s control
flow, are located in between the app-side validation logic and any
data-transforming (e.g., message serialization) function occurring
before sending data over the network. Precisely, given an execution
trace from a source of input (e.g., data received from the UI) to the
function sending data over the network, a fuzzing trigger is defined
as a function that dominates1 all data-transforming functions and
post-dominates all input-validating functions. We consider the first
data-transforming function in the trace a valid fuzzing trigger, as it
dominates every other data-transforming function (itself included).

Our bottom-up Fuzzing Trigger Identification algorithm is
composed of four steps: i) sendMessage Candidates Identification,
ii) sendMessage Validation, iii) Data-Transforming Function
Identification, and iv) Top-Chain Functions Collection. Algorithm 1
lists the pseudo-code of our approach.
Step 1: sendMessage Candidates Identification. We begin by
identifying the functions, in the companion app, that implement
the necessary logic to send messages to the IoT device. We call
these functions sendMessage functions.

Identifying these functions in an automated and scalable way
is difficult. Companion apps might rely on ad-hoc native functions
directly invoking system calls to implement sendMessage
functions. Furthermore, we found that these functions might be

1We refer to the dominance concept of the call graph theory, where a node d domi-
nates a noden if every path from the entry node tonmust go through d. Also, we say
that a node p post-dominatesn if every path fromn to an exit node passes through p.

3

Static Analysis

Candidate
sendMessage

Dynamic Analysis

API Hooking

Response
Monitoring

Network Activity
Detection

UI Replay

Filtered
sendMessage

Fuzzing

Validated
sendMessage

Crashes

Clustering Hybrid Analysis

sendMessageData Transforming
Function

Fuzzing
Triggers

Companion
App

IoT
Device

Fig. 2. Using static analysis, DIANE first identifies candidate sendMessage functions. Then, it runs the companion app, replaying a recorded user
interaction, to validate the candidate sendMessage functions. Next, DIANE uses a hybrid analysis to identify data-transforming functions and, therefore,
fuzzing triggers. Finally, DIANE fuzzes the validated triggers and identifies crashes by monitoring the device responses.

executed within separate threads, which makes it harder for any
analyses (both static or dynamic) to precisely track data flows
between the app’s UI and sendMessage functions. However,
our key insight is that the companion app must contain “border”
functions, situated between the app core functionality and external
components (i.e., the Android framework or native libraries),
which, when executed, eventually trigger a message to be sent to
the IoT device. Throughout the rest of the paper, we consider these
border functions our sendMessage functions.

In our approach, we first identify candidate sendMessage
functions by statically analyzing the companion app. We aim
at finding all the border methods that might implement the
network interactions with the analyzed IoT device (function
getBorderMethods in Algorithm 1). Specifically, we collect all
the methods that perform (at least) a call to native functions or a
call to methods in the Android framework that implement network
I/O functionality (see Appendix A for more details).

Step 2: sendMessage Validation. We dynamically execute the app
and leverage API hooking to validate the candidate sendMessage
functions. In order to establish whether a border function is a valid
sendMessage function we could, in theory, i) dynamically execute
the function multiple times and check whether it generates network
traffic each time, and ii) prevent the app from executing the function
and check whether or not network traffic is still generated. Unfortu-
nately, we found that preventing a function to be executed, as well
as forcing the app to execute the same function multiple times, usu-
ally causes the app itself to crash. To solve these issues, we adopt
a different approach, based on timestamps and machine learning.

First, we dynamically hook all the candidate functions and run
the app. When we observe network activity, we register the last
executed candidate sendMessage function. In particular, each time a
candidate sendMessage function is executed, we collect the elapsed
time between its execution and the observed network activity. Then,
we leverage the K-mean algorithm to cluster the observed elapsed
time measures. Specifically, we group our candidates into two
clusters (i.e., k=2). To do so, we compute each feature vector as
the mean, standard deviation, and mode of the elapsed times of

each candidate. The rationale is that functions that cause network
activity have a smaller mean and standard deviation, as they are less
affected by noise. Finally, among the sendMessage candidates, we
select those belonging to the cluster having the smallest mean of the
elapsed times. Only the sendMessage functions within this cluster
will be considered in the subsequent steps of our analysis. This ap-
proach is represented by the function dynamicFilter in Algorithm 1.
Step 3: Data-Transforming Function Identification. While
sendMessage functions are intuitively good triggers for performing
fuzzing, apps may apply data-transformations in functions
executed before a sendMessage function. A typical example of a
data-transforming function is represented by an encoding method
that takes as input a list of integers and serializes it to a sequence
of bytes.

As previously explained, fuzzing triggers are functions that, in
the app’s control flow, are located before any data-transforming
function. Fuzzing a function located in between a data-transforming
function and a sendMessage function would likely produce invalid
inputs that are discarded by the IoT device. Thus, to find fuzzing
triggers, we first need to identify the data-transforming functions
applied to the data being sent.

This task presents different challenges. First, the data being
sent might be contained in a class field, which is referenced
by the sendMessage function. This field might be theoretically
set anywhere in the app code, including within other threads.
Furthermore, for each field, we need to consider its parent classes,
as the variable holding the message to be sent might be inherited
by a different class.

In our approach, we take into account these issues. We first
statically identify the possible variables that hold the data being
sent by the considered sendMessage function, and the code
locations where these variables might be set in the app (function
getArgAndObjLocs in Algorithm 1). To achieve this, we create
a set Sv containing tuples (v,cl), where v is a variable used by the
sendMessage (i.e., sendMessage arguments or objects referenced
within the sendMessage body), and cl is the code location where
v is set.

4

Then, we identify data-transforming functions. For each tuple
(v,cl)∈Sv, we perform a static inter-procedural backward slicing
(Line 6 in Algorithm 1) from cl up to any function retrieving values
from any UI objects. Then, we divide the computed program slices
in function scopes (getFunctionScopes at Line 7). Given a program
slice, a function scope is defined as a subsequence instf of sequen-
tial instructions in the slice that belong to the same function f .

For each collected function scope, we perform a liveness
analysis [63]: We consider the variables (i.e., local variables and
class fields) referenced within the function scope, and we compute
the set Lif of variables that are live at the beginning of the scope,
and the set Lof of variables that are live at the end of the scope
(Line 8). For example, if a function f is traversed by the slice, the
variables that are live at the beginning of the function scope instf
are f’s arguments and the class fields that are read before being
written in f . The variables that are live at the end of f’s scope are
the returned variable and the class fields that f creates or modifies.

To identify data-transforming functions, we leverage the
observation that these functions increase the entropy of the data
they consume, as explored by related work [25]. Therefore, we
hook the functions we identified in a slice, we dynamically run
the app, and we calculate the Shannon entropy [49] of the data
assigned at runtime to each variable v contained in Lif and Lof
(more details about how we calculate the entropy are provided in
Appendix C). If v is a primitive variable (e.g., int), or a known
type (i.e., String, Integer, Float, and Double), we
convert the data it contains in its byte representation and calculate
the Shannon entropy of this list of bytes. Conversely, if v is a class
field, we retrieve its class definition and consider each field variable
vc of v whose type is either primitive or known. Then, we compute
the entropy of each one of these vc variables, and add them to either
the Lif set or to the Lof set, depending on which live set v belongs.

Finally, we inspect every collected function scope and calculate
the quotient de between the maximum entropy registered among
all the variables in Lof and the minimum value of entropy
registered among all the variables in Lif (Line 11). If de is greater
than a certain threshold Tf (set to 2.0 in our experiments, as
previous work suggested [80]), we consider the function f to be
a data-transforming function (Line 12).
Step 4: Top-Chain Functions Collection. Data-transforming
functions are usually executed in precise sequences to adequately
prepare the data to be sent to an IoT device. For instance, a
companion app may encode some user data in base64, and then
encapsulate it in an HTTP request.

We call a sequence of data-transforming functions a
transformation data chain, and we refer to the first function in the
sequence with the term top-chain function. We say that a top-chain
function f affects a variable v if modifying the content of f’s
variables eventually affects v’s value.

Of particular interest for us are the top-chain functions that affect
sendMessage variables. In fact, if we control the variables of these
top-chains, we can control the data sent to the analyzed IoT device.
In particular, this data is both valid (i.e., accepted by the IoT device)
and not affected by unnecessary app-side input validation. As such,
top-chain functions that affect sendMessage variables represent the
optimal fuzzing triggers to stimulate the IoT device functionality.

Algorithm 1 Fuzzing Trigger Identification.
1: procedure GETTOPCHAIN(sendMessage)
2: topChain←{}
3: for (v,cl)∈getArgAndObjLocs(sendMessage) do
4: to_hook←{}
5: dtf← []
6: bsl←getBackwardSlice(v,cl)
7: for (f,instf)∈getFunctionScopes(bsl) do
8: (Lif ,Lof)← livenessAnalysis(instf)
9: to_hook←to_hook∪{f,(Lif ,Lof)}

10: for {f,(ELif ,Elof)}∈getEntropies(to_hook) do
11: de←maxVarEntropy(Elof)/minVarEntropy(Elif)
12: appendIfDataTransforming(dtf,de,{f,Lif})
13: trees←getDominatorTrees(dtf)
14: candidates←dtf∪{sendmessage}
15: for fc∈candidates do
16: if not isDominated(fc,trees) then
17: topChain←topChain∪{fc}
18: return topChain

19: procedure FUZZINGTRIGGERIDENTIFICATION(CompanionApp)
20: fuzzingTriggers←{}
21: borderMethods←getBorderMethods(CompanionApp)
22: for s∈dynamicFilter(borderMethods) do
23: fuzzingTriggers←fuzzingTriggers∪getTopChain(s)
24: return fuzzingTriggers

To identify top-chain functions, we build the dominance tree2 of
each data-transforming function detected at the previous step (Line
13), and select those data-transforming functions that are not dom-
inated by any other data-transforming function (Line 16). Finally,
we consider as fuzzing triggers the collected top-chain functions.

Note that, if no data-transforming function dominates a
sendMessage function, we consider the sendMessage as a fuzzing
trigger (Line 14, 15, and 16). This could happen when, for instance,
the companion app does not contain data-transforming functions.

Note finally that, in principle, app-side sanitization code might
be present in a function within a transformation data chain. We
discuss this in Section V.
Example. As a simple example, consider Figure 3, which repre-
sents one of the data chains we found on the August Smart Lock
device. Assuming that we previously identified sendToDevice
as being a sendMessage function, we set { c} as the initial set of
variables possibly holding data to be sent, and determine the code
locations where c is set. As c is a function argument, we retrieve
the sendMessage call site (Line 15), and bootstrap a backward
program slicing from the call site, up to the function unlock
(Line 1). This is achieved by following the data-flow of the variable
e backward: sendToDevice uses the variable e, which is
the result of a call to the function encrypt. Then, we continue
the slice backward from the end of the function encrypt up to
its entry point, and back to the sendCommand function. Finally,
we reach the entry point of this function, and continue the slice
considering its caller (i.e., the function unlock).

Following the definition of function scopes above stated,
this backward slice contains the following function scopes: i)
sendCommand: Line 15; ii) encrypt: Lines from 6 to 9;
iii) sendCommand: Lines 12 and 13; iv) unlock: Line 3;
v) Command constructor (code not reported in this example);

2A graph where each node’s children are those nodes it immediately dominates.

5

1 public boolean unlock() { // unlock request
2 Command cmd = new Command(OP.UNLOCK);
3 return sendCommand(cmd);
4 }
5 /* Encrypts and return its parameters */
6 public byte[] encrypt (Command b){
7 byte[] enc;
8 // ...
9 return enc;

10 }
11
12 public boolean sendCommand (Command cmd){
13 // various checks on the command to send
14 byte[] e = encrypt(cmd);
15 return sendToDevice(e);
16 }
17 /* send a message */
18 public boolean sendToDevice(byte[] c) {/* ... */}

Fig. 3. Example of a simple Transformation Data Chains found on the
August Smart Lock.

and vi) unlock: Lines 1 and 2. For brevity, in the following
we only consider the relevant function scopes: ii) encrypt, iii)
sendCommand, and vi) unlock. Their sets of live variables are:
encrypt: Lif = {b}, Lof = {enc}; sendCommand: Lif =
{cmd}, Lof ={cmd}; and unlock: Lif ={}, Lof ={cmd}.

Once we identify the function scopes in the slice, we run the app
and compute the entropy of the data assigned to each of their live
variables. Then, we calculate the amount of entropy introduced
by each function scope and check whether its value exceeds a
threshold Tf .

The function unlock does not introduce any entropy, as the
set Lif is empty. In the cases where the set Lif is empty, we
do not consider the function f as a candidate data-transforming
function, since it does not take any input.

For the function encrypt, the entropy of the data stored
in b is 5.94, whereas the entropy of the data returned in
enc is 53.16. Since the entropy delta de is greater than our
threshold (de=53.16/5.94>2.0), we consider encrypt as a
data-transforming function. Also, the function sendCommand
introduces a low amount of entropy (de = 1.03), and, therefore,
it is not considered a data-transforming function. Finally, as the
function encrypt dominates the function sendToDevice,
encrypt is the only top-chain function, and it is used as the
only fuzzing trigger.
UI Stimulation. Our approach executes the same app multiple
times, being consistent across the different runs. Thus, ideally, we
want the app to follow always the same execution paths. To achieve
this goal, we require the analyst to run the app once, while DIANE
records the generated UI inputs. Then, we automatically replay the
same inputs in the subsequent runs, by leveraging RERAN [40].
We do not explicitly handle other sources non-determinism [29],
as we found them to not significantly affect our approach.
Fuzzing Intermediate Data-Transforming Functions. In
principle, transformation data chains might be arbitrary long. As
DIANE’s goal is to stimulate the core functionality of IoT devices,
our approach ignores intermediate data-transforming functions
(i.e., data-transforming functions dominated by a top-chain
function) as they generate messages that would likely be discarded
by the IoT device. However, as IoT devices might contain bugs
also in the procedures used to decode a received message, we

provide DIANE with the option to fuzz also all the intermediate
data-transforming functions. Likewise, DIANE provides an option
to fuzz the sendMessage functions directly even when dominated
by top-chain functions. In Section IV-C, we empirically show that
fuzzing the sendMessage functions does not lead to the discovery
of new bugs, while it slows down the execution of our tool.

B. Fuzzing

After the first phase of our approach, we obtain a set of fuzzing
triggers, which are the inputs to our fuzzer.
Test Case Generation. For each fuzzing trigger, we generate a set
of test cases by mutating the parameters of the identified fuzzing
triggers, which eventually modify the data sent by a sendMessage
function. We fuzz the different fuzzing triggers one at the time,
in a round-robin fashion. To mutate the values of their parameters,
we use the following strategies:
• String lengths: We change the length of strings in order

to trigger buffer overflows and out-of-bound accesses. We
generate random strings with different lengths.

• Numerical values: We change the values of integer, double
or float values to cause integer overflows or out-of-bound
accesses. We generate very large values, negative values, and
the zero value.

• Empty values: We provide empty values, in the attempt to
cause misinterpretation, uninitialized variable vulnerabilities,
and null pointer dereferences.

• Array lengths: We modify the content of arrays by removing
or adding elements.

It is important to specify that we do not only fuzz primitive
variables (e.g., int, float), but we also fuzz objects (as
explained in Appendix B), by fuzzing their member variables.
Identifying Crashes. As shown by a recent study [61], identifying
all crashes of network-based services of IoT devices without
invasive physical access to the devices is challenging. At the
same time, getting invasive physical access to IoT devices needs
considerable engineering effort [9], since vendors usually prevent
this type of access [10], [11].

For these reasons, while fuzzing a device, DIANE automatically
analyzes its responses to identify crashes. Specifically, DIANE
first performs a normal run of the app and monitor how the device
responds during normal activity. Then, while fuzzing, DIANE
monitors the network traffic between the app and the device again,
and considers an input to be potentially crash-inducing, if any one
of the following conditions is satisfied.
• Connection dropped. If the device abruptly ends an

ongoing connection, we consider it as an indication that
something wrong happened to the device. Specifically, for
TCP connections, we look for cases where the app sent a
FIN packet and received no response (FIN + ACK), and
then sent a sequence of two or more SYN packets.

• HTTP Internal Server Error (500). Instances where the app
and the device communicate through HTTP, and the device re-
turns an Internal Server Error [1] (status code 500), are con-
sidered as a signal that the device has entered in a faulty state.

• Irregular network traffic size. If the amount of data
exchanged between the app and the device overcomes a

6

threshold Se, we save the current crash-inducing input. Our
intuition is that, when a device enters a faulty state (e.g., due
to a crash) it usually becomes temporarily unavailable for the
app, thus drastically reducing the amount of data exchanged.
In our experiments, we empirically verified that when the
amount of exchanged data was less than 50% (compared to a
regular run), something unusual happened to the device. For
this reason, we set Se to be 50%.

• Heartbeat Monitoring. While fuzzing a given device, we
continuously ping it and monitor its response time. We report
any crash-inducing inputs causing the response time to be
above a certain threshold Tp. In our experiments, we set Tp

to 10 seconds, as we empirically verified that the average
response time of an IoT device falls within 1 second under
normal conditions.

Finally, we use an additional Android smartphone, which we
refer to as the watchdog device, to monitor the status of the IoT
device from a neutral standpoint (i.e., we do not instrument the
companion app on this device). We run the companion app on the
watchdog device and automatically replay the previously recorded
UI inputs to exercise the different IoT device functionality at regular
intervals. A human analyst can then observe whether the functional-
ity exercised by the watchdog device (e.g., pressing the light switch
UI button) causes the desired effect on the IoT device (e.g., turning
the light on) or not. If an undesired effect is detected, it means that
Diane was able to bring the analyzed device into an invalid state.

IV. EXPERIMENTAL EVALUATION

In this section, we answer two research questions:

1) Is DIANE able to find both previously-known and previously-
unknown vulnerabilities in IoT devices effectively?

2) Is DIANE needed to find vulnerabilities in IoT devices
effectively, or can existing (app-based or network-level)
fuzzers achieve similar results?

To answer the first research question, we first evaluated DIANE
precision in detecting fuzzing triggers (Section IV-B) and then we
used it to fuzz 11 different IoT devices (Section IV-C). Our system
found 11 bugs in 5 devices, including 9 zero-day vulnerabilities,
running, in all cases, for less than 10 hours (Section IV-H).

To answer the second research question, we first compared our
tool with IoTFuzzer [25] by running it on the 11 analyzed devices
(Section IV-D). Our experiment shows that DIANE outperformed
IoTFuzzer in 9 devices, and performs as well as IoTFuzzer for the
remaining 2 devices. Then, we performed a larger-scale automated
study (Section IV-E) to measure how often companion apps
perform app-side validation, which would limit the efficiency
of approaches like IoTFuzzer. Our experiment revealed that
51% of the analyzed apps contain, indeed, app-side sanitization.
Finally, we compared DIANE with existing network-level fuzzers
(Section IV-F), and showed that network-level fuzzers are unable
to find bugs in the analyzed devices.

We conclude this section by presenting a detailed case study
about two zero-day bugs DIANE found in one of the analyzed
devices (Section IV-G).

A. Dataset & Environment Setup

To evaluate DIANE, we used popular real-world IoT devices of
different types and from different brands. Specifically, in October
2018 we searched for “smart home devices” on Amazon and
obtained the list of the top 30 devices. Among these, we excluded 5
expensive devices (price higher than 200 USD), 1 device that does
not communicate directly with the companion app (the communica-
tion passes through a Cloud service), and other 13 devices because
they require other appliances (e.g., a smart ceiling fan controller).

Our dataset contains the remaining 11 devices, which are
listed in Table I. This dataset encompasses devices of different
types (cameras, smart sockets, bulbs, smart locks). Note that the
respective companion apps of these devices are quite complex
as they contain, on average, over 9 thousand classes, 56 thousand
functions, and 766 thousand statements. The complexity of these
apps is in line with the complexity of the apps used by the related
work [79], which contains the largest dataset of validated IoT apps.

We installed the IoT devices in our laboratory, we deployed
DIANE on an 8-core, 128GB RAM machine running Ubuntu
16.04, and we ran the Android companion apps on a Google Pixel
and a Google Nexus 5X running Android 8.0. The smartphones,
the IoT devices, and the machine running DIANE were connected
to the same subnet, allowing DIANE to capture the generated
network traffic. To configure each device, we manually performed
its initial setup phase, such as registering an account on the device
and on the Android companion app.

B. Fuzzing Trigger Identification

Table II shows the results of each step of DIANE’s fuzzing trig-
gers identification phase: For each IoT device, we report the proto-
cols in use to communicate with the companion app, whether or not
the app contains native code, if it sanitizes user inputs, the number
of candidate sendMessage functions found by DIANE, the number
of validated sendMessage functions, and the number of fuzzing
triggers. For each intermediate result, we calculated the number of
true positives and false positives, and investigated false negatives.

Since there is no available ground truth, we validated our
ability to identify sendMessage functions and fuzzing triggers by
manually reversing (both statically and dynamically) the Android
companion apps in our dataset. Specifically, an expert analyzed
each app for an average of five hours.

Reverse engineering of real-world apps is known to be difficult.
Therefore, while we did our best to fully comprehend the
dynamics of these apps, in a few cases we could not verify our
results completely, as indicated in the following sections. We
also acknowledge that this manual evaluation cannot completely
exclude the presence of false negatives.

To measured DIANE’s ability to find sendMessage functions
precisely, we manually analyzed the sendMessage functions
returned by the first two steps of our analysis. Specifically, we
classified each function returned by the sendMessage candidates
identification step (Step 1 in Section III-A) and by the sendMessage
function validation step (Step 2 in Section III-A) as either true
positive or false positive (TP and FP in the fifth and sixth columns
of Table II). To perform this classification, we hooked each of these
functions and manually exercised the IoT device’s functionality

7

TABLE I
SUMMARY OF OUR DATASET OF IOT DEVICES (* ACCOUNT REQUIRED TO OPERATE THE DEVICE).

Device
ID Type Vendor Model Firmware

Vers.
Android App

Package Name
App
Vers.

Online
Account*

Setup Time
[Seconds]

1 Camera Wansview 720P X Series WiFi 00.20.01 wansview.p2pwificam.client 1.0.10 7 219
2 Camera Insteon HD Wifi Camera 2.2.200 com.insteon.insteon3 1.9.8 3 427
3 Smart Socket TP-Link HS110 1.2.5 com.tplink.kasa_android 2.2.0.784 7 311
4 Camera FOSCAM FI9821P 1.5.3.16 com.foscam.foscam 2.1.8 3 406
5 Camera FOSCAM FI9831P 1.5.3.19 com.foscam.foscam 2.1.8 3 403
6 Smart Socket Belkin Wemo Smart Socket 2.0.0 com.belkin.wemoandroid 1.20 7 211
7 Bulb iDevices IDEV0002 1.9.4 com.idevicesllc.connected 1.6.95 7 274
8 Smart Socket iDevices IDEV0001 1.9.4 com.idevicesllc.connected 1.6.95 7 276
9 Camera Belkin NetCam Unknown com.belkin.android.androidbelkinnetcam 2.0.4 3 1,040

10 Bulb LIFX Z 2.76 com.lifx.lifx 3.9.0 3 313
11 Smart Lock August August Smart Lock 1.12.6 com.august.luna 8.3.13 3 213

TABLE II
SUMMARY AND FEATURES OF OUR DATASET OF IOT COMPANION APPS. TP INDICATES A TRUE POSITIVE RESULT, FP A FALSE POSITIVE

RESULT, AND NC A RESULT WE WERE NOT ABLE TO CLASSIFY EITHER AS TRUE POSITIVE NOR FALSE POSITIVE. ? INDICATES THAT WE COULD
NOT VERIFY WHETHER AN APP APPLIED DATA SANITIZATION. THE LAST THREE COLUMNS INDICATE THE COMPLEXITY OF THE APPS IN TERMS

OF NUMBER OF CLASSES, FUNCTIONS, AND STATEMENTS RESPECTIVELY.

Device Network Native Sanity No. Candidate No. No. Fuzzing No. No. No.
ID Protocol Code Checks sendMessage sendMessage Triggers Classes Functions Statements

1 UDP 3 3 4 (1 TP, 3 FP) 1 (1 TP) 7 (6 TP, 1 FP) 4,341 31,847 409,760
2 HTTP 3 3 12 (8TP, 4FP) 9 (6 TP, 3 FP) ? 6 (6 TP) 11,870 76,558 1,180,817
3 TCP + JSON 7 ? 6 (2 TP, 4 FP) 6 (2 TP, 4 FP) 3 (2 TP, 1 FP) 16,461 107,935 1,267,785
4 UDP 3 3 10 (2 TP, 7 FP, 1 NC) 2 (2 TP) 2 (2 TP) • 6,859 41,256 615,410
5 TCP 3 3 10 (2 TP, 7 FP, 1 NC) 2 (2 TP) 2 (2 TP) • 6,859 41,256 615,410
6 HTTP + SOAP 3 7 15 (3 TP, 12 FP) 6 (2 TP, 4 FP)? 9 (8 TP, 1 FP) 4,169 30,462 378,733
7 TCP 3 3 8 (2 TP, 6 FP) 3 (2 TP, 1 FP) 4 (3 TP, 1 NC) 8,418 52,013 813,444
8 TCP 3 3 8 (2 TP, 6 FP) 3 (2 TP, 1 FP) 4(3 TP, 1 NC) 8,418 52,013 813,444
9 TCP 3 ? 6 (3 TP, 3 FP) 1 (1 TP)? 1 (1 TP)• 6,010 42,358 467,670

10 UDP 3 ? 9 (1 TP, 8 FP) 3 (1 TP, 2 FP) 0 5,646 33,267 457,719
11 Bluetooth 3 3 9 (4 TP, 5 FP) 9 (4 TP, 5 FP) 16 (14 TP, 2 FP) 22,406 108,507 1,411,798

Total 10/11 7/11 97 (30 TP, 65 FP, 2 NC) 45 (25 TP, 20 FP) 54 (47 TP, 5 FP, 2 NC) 101,457 617,472 8,431,990

• fuzzing triggers coincide with sendMessage functions.

TABLE III
SUMMARY OF THE BUGS DETECTED BY DIANE, IOTFUZZER, AND BY EXISTING NETWORK FUZZERS (BED, SULLEY, UFUZZ, AND BSS). NO.
GENERATED ALERTS INDICATES THE NUMBER OF UNIQUE fuzzing triggers FOR WHICH DIANE AUTOMATICALLY GENERATED AT LEAST ONE

ALERT. TIME INDICATES THE TIME REQUIRED TO FIND ALL THE REPORTED BUGS (AND THE NUMBER OF FUZZING INPUT GENERATED TO FIND
THE BUGS). NO. FUZZED FUNCTIONS INDICATES THE NUMBER OF FUNCTIONS IDENTIFIED BY IOTFUZZER FOR FUZZING.

DIANE IoTFuzzer Other Fuzzers

Device No. Generated No. Vuln. Time [hours] No. Fuzzed No. Time No. Bugs
ID Alerts Bugs Zero-day Type (No. Generated Inputs) Functions Bugs [hours] BED Sulley uFuzz bss

1 1 1 3 Unknown ≤0.5 (60,750) • 1 0 N/A N/A 0 N/A N/A
2 3 7 3 Buff overflow ≤0.5 (322) 5 2 0.98 0 0 N/A N/A
3 1 1 Unknown ≤1.2 (7,344) 1 1 4 0 0 N/A N/A
4 1 0 N/A N/A • 1 0 N/A N/A 0 N/A N/A
5 1 0 N/A N/A • 1 0 N/A 0 0 N/A N/A
6 4 1 Unknown ≤10 (34,680) 1 1 ≤10 0 0 0 N/A
7 3 0 N/A N/A N/A N/A N/A 0 0 N/A N/A
8 3 0 N/A N/A N/A N/A N/A 0 0 N/A N/A
9 0 0 N/A N/A 3 0 N/A 0 0 0 N/A
10 1 0 N/A N/A N/A N/A N/A N/A 0 N/A N/A
11 0 † 1 3 Unknown 2.2 (3,960) N/A N/A N/A N/A N/A N/A 0

•We manually instrumented IoTFuzzer to identify a valid send function. † Vulnerability discovered through the watchdog device.

through its companion app, while monitoring the network traffic.
We considered a candidate sendMessage function a true positive
if: i) We registered network traffic when the companion app
invoked the sendMessage function, and ii) the code and semantic
of the function indicated network functionality. If either of these
two conditions were false, we considered the sendMessage
function a false positive. There were cases where the app was
heavily obfuscated, and we could not establish if the considered
sendMessage function was indeed sending data (NC in Table II).

As shown in Table II, DIANE was able to remove 45 false
positive results during its sendMessage function validation step, .

For Device IDs 2, 6, and 9 (indicated with ?), one might think that
we lost some true positives during the validation step. However,
this was not the case. After manual verification (using both static
and dynamic analyses), we discovered that the missing true
positives were just wrappers of other validated true positives. We
also looked for false negatives, that is, sendMessage functions that
were not identified as such. To the best of our ability, we found
no such false negatives.

Overall, though we registered some false positives (20 in total),
we always identified correctly sendMessage functions (i.e., no
false negatives). We investigated the false positives and we found

8

that they were due to border functions containing calls to native
methods, which were called within (or right before) the correct
sendMessage functions. As such, their execution times were close
to the actual sendMessage functions, causing our sendMessage vali-
dation step to label them as valid sendMessage functions. Also, it is
important to say that false positive results do not affect the effective-
ness of DIANE (i.e., the number of bugs found), rather its efficiency
(i.e., the time spent to find those bugs). In fact, considering a non-
sendMessage function as a sendMessage would only result in iden-
tifying additional, wrong fuzzing triggers that would not generate
any network traffic when fuzzed, thus not affecting the IoT device.

For each true positive sendMessage function, we verified that
DIANE correctly identified the top-chain functions (i.e., fuzzing
triggers). Fuzzing triggers for Device IDs 4, 5 and 9 (marked
with •) coincided with the sendMessage functions. This happens
in apps that either do not have data-transforming functions, or
where the functions that transform the data also embed the send
functionality. Consequently, these functions are both sendMessage
and top-chain functions.

For three apps (Device IDs 3, 9 and 10), we could not trace the
data-flow from the identified sendMessage functions back up to
the UI elements. This was due to imprecisions of the employed
reverse engineering tools. Therefore, we could not establish
whether they performed app-side data sanitization.

We also investigated false positives and negatives in the
identified fuzzing triggers. Overall, our transformation data chain
identification algorithm generated 5 false positives. In 2 cases, our
backward slicer could not find any callers of a given function, and,
therefore, our algorithm ended and considered the last detected
data-transforming function f a fuzzing trigger. After manual
verification, we found that the correct fuzzing trigger, in both cases,
was a caller of function f . Although f is a valid data-transforming
function, DIANE cannot assure that it is a top-chain function, as
there might be another data-transforming function calling f that
dominates f . The remaining 3 false positives were due to the fact
that these functions introduced an entropy higher than our threshold,
though they were not data-transforming functions. However, we
maintained our threshold to 2 as this value is indicated as optimal
by related work [80]. As we explained before, these false positives
do not influence the effectiveness of DIANE, but only its efficiency.

Finally, we evaluated the false negatives generated by DIANE.
To the best of our ability, we did not encounter any false negative
while manually reversing the apps.

C. Vulnerability Finding

Finally, we fuzzed the obtained fuzzing triggers, and verified
the alerts produced by our tool. Table III shows the results of our
fuzzing. Note that, while DIANE can also use sendMessage func-
tions as entry points for fuzzing, it identified all the detected bugs
only when leveraging fuzzing triggers. We discuss the human effort
required to verify the alerts produced by DIANE in Section IV-I.

We validated our findings as follows. The seven bugs for Device
ID 2 were confirmed by analyzing both the network traffic and
the camera firmware. Through the analysis of the firmware, we
were able to verify our findings and craft a proof-of-work exploit

that stalls the device for an arbitrary amount of time. We reported
these bugs to the manufacturer, who confirmed our findings.

As for Device ID 1, after finding the candidate crash input, we
verified it, through the app, by observing how the device behaved.
We noticed that, after sending the crafted input, the device did not
respond anymore, unless it was rebooted. Also, after fuzzing it for
24 hours the device entered a malfunctioning state, and we were
unable to correctly restore it, even after multiple factory resets. We
then purchased another camera of the same model, and the same
result was obtained after 24 hours. We are still investigating to
find whether some crash-inducing inputs we provided also cause
irreparable damage to the device.

When validating the crash reports for the Device ID 3, we
noticed that, after sending the crash-inducing input, the TCP
connection was dropped, and the device response time significantly
increased. We found that this bug, as well as the bug affecting the
Device ID 6, were known vulnerabilities [25].

For Device ID 11 (a popular smart door lock), we noticed that
after around two hours of fuzzing the device became unreachable
for the watchdog device. Even more interestingly, the device then
started to make an intermittent noise, which we realized being
“SOS” encoded in morse code3. We then reset the door lock, and
we observed that it started to show erratic behavior. For example,
we noticed that it was not possible to control it through two
different Android phones anymore: If the lock status was shown
as “online” on one companion app, it would be “unreachable” on
the same companion app on another phone. We are still working
with the vendor to find the root cause of the problem.

We reported our findings to the appropriate manufacturers and,
to the best of our knowledge, all bugs have been fixed.

D. DIANE vs. IoTFuzzer

To compare our approach to IoTFuzzer [25], we contacted the
authors and obtained their tool. We also attempted to purchase the
same devices used to evaluate IoTFuzzer, but we could only obtain
Device 3 and 6, as the remaining ones were only available in China.

IoTFuzzer required manual intervention to be adapted to
different devices and companion apps. In particular, we had to i)
limit the scope of the analysis (i.e., number of hooked functions)
to a subset of Java packages present in the Android apps—to keep
the analysis tractable and avoid crashes—and ii) manually specify
any encryption functions present in the app. After this manual
configuration step, we were able to replicate the results presented
in the original paper for the devices we were able to obtain (Device
3 and Device 6). Additionally, IoTFuzzer is based on TaintDroid,
whose latest release supports up to Android 4.3 (2012). For this
reason, we were not able to analyze Device 10 and Device 11, as
their companion apps require newer Android SDK versions.

Our results are reported in Table III. IoTFuzzer crashed Device
3 and 6 (the two devices used in the original paper) and Device
2, but failed to find any bugs for the other 8 devices.

For Device 2, IoTFuzzer identified 5 functions to fuzz. We
manually analyzed these functions and found that three of them
were false positives, as they were used to save user information

3Audio recording: http://bit.ly/3oWcjgD

9

http://bit.ly/3oWcjgD

on the Android phone. To confirm our findings, we fuzzed these
functions and observed that none of them generated network traffic.

Then, we proceeded to fuzz the two remaining
functions, named HouseExtProperty and
changeCameraUsernamePassword. While fuzzing
the HouseExtProperty function for an hour, we discovered
that the generated messages were directed to the vendor’s
cloud, rather than the actual device, therefore not producing any
meaningful fuzzing input for the IoT device.

The changeCameraUsernamePassword function is,
instead, used to change the credentials on the IoT device. We
fuzzed this function for 24 hours, and IoTFuzzer rediscovered 2
of the 7 bugs that DIANE found on this device.

To understand better why IoTFuzzer missed some of the bugs we
found, we examined changeCameraUsernamePassword
(shown in Figure 4). This function calls the functions
cam.changeUsername and cam.changePassword
to generate the requests to change the username and password,
respectively (the first argument of these functions represents the
current username of the camera). Also, the variable cam is an
internal structure that the app uses to store the details of the camera
(e.g., the camera model), and its content is not directly influenced
by the data received from the app’s UI. On the other hand, both
newUsr and newPwd contain user data, which is passed through
the app’s UI. As IoTFuzzer fuzzes only the function arguments
that contain user data (when a function is invoked), it fuzzes the
second and third function arguments, but it does not fuzz the first.

Unfortunately, as we explain in detail in Section IV-G, this
camera contains a bug that can be exploited if the request generated
by the companion app contains a username whose length is larger
than a particular buffer size. However, by fuzzing the second
two arguments of changeCameraUsernamePassword
IoTFuzzer only mutate the second parameter of
cam.changeUsername and cam.changePassword—
newUsr and newPwd respectively—and it does not mutate
their first parameter (cam.user), which would lead to the
discovery of an additional bug. This case highlights a limitation
of IoTFuzzer’s approach, as it shows that assuming that all the
data being sent to the device comes directly from the app’s UI
is ineffective to find bugs in an IoT device. On the other hand,
our bottom-up approach, which bootstraps its analysis from
sendMessage functions (see Section III), is agnostic with respect
to the sources of input, and, therefore, is more generic.

In addition, changeCameraUsernamePassword allows
one to modify the credentials only for specific camera models (Line
2, cam.checkCameraModel). This means that IoTFuzzer
cannot effectively fuzz other camera models. By identifying a
fuzzing trigger deeper in the control flow, DIANE, instead, bypasses
this check and is effective independently from the device version.

For Device IDs 7 and 8, IoTFuzzer caused the app to crash
immediately due to the number of hooked functions. We narrowed
the analysis to only the package containing the code to interact
with the device, but the app would crash regardless. Thus, we
could not run IoTFuzzer on these devices.

1 boolean changeCameraUsernamePassword(Camera
cam, String newUsr, String newPwd) {

2 if(cam.checkCameraModel()) {
3 if(cam.user.compareTo(newUsr) != 0)
4 cam.changeUsername(cam.user, newUsr);
5 if(cam.pwd.compareTo(newPwd) != 0)
6 cam.changePassword(cam.user, newPwd);
7 }
8 //...
9 }

Fig. 4. Fuzzing function found by IoTFuzzer for the Insteon camera
(Device ID 2). We report only the relevant code for space reasons.

1 void
changeCredentials(String newUsr, String newPwd) {

2 if(this.confirm_credentials()) {
3 if(!this.get_user().equals(newUsr)

&& !this.get_pwd().equals(newPwd))
4 this.changeUserAndPwd(newUser, newPwd);
5 //...
6 }
7 }

Fig. 5. Fuzzing function found by IoTFuzzer for the Foscam cameras
companion app (Device IDs 4 and 5).

For Device ID 9, IoTFuzzer identified 3 functions to fuzz.
However, we found these functions to be false positives, as they
were used to log user data on the smartphone.

For Devices IDs 1, 4, and 5 (marked with • in Table III)
IoTFuzzer failed to identify any functions to fuzz. The reason is
that to find a function to fuzz, IoTFuzzer has to first find a data
flow between a UI element of the app and the Android’s socket
send function. However, in these devices the “send” functionality
is implemented in native code (i.e., these devices do not rely
on the Android’s send function). As IoTFuzzer cannot identify
send functions in native code, it failed to identify what UI events
would eventually generate network traffic, and, therefore, it did
not generate any valid fuzzing inputs. DIANE overcomes this
limitation by using dynamic analysis, and find the border functions
that generate network traffic, as explained in Section III-A.

To help IoTFuzzer and have a direct comparison with our
tool, we hard-coded the send functions found by DIANE in
IoTFuzzer, and re-ran the analysis for these devices. For Device
IDs 4 and 5, IoTFuzzer identified one candidate function to fuzz,
which, similarly to Device ID 2, is used by the app to change the
device’s credentials. This function is depicted in Figure 5, and it
implements a check (through confirm_credentials) that
asks the user to provide their credentials in order to proceed. As
a result, fuzzing changeCredentials did not produce any
meaningful input to the camera, as the check would constantly
fail. Instead, DIANE identified as a fuzzing trigger the function
changeUserAndPwd, which is not affected by any checks, and
effectively sends commands to the camera when fuzzed. These
cases highlight another limitation of IoTFuzzer’s approach, as they
show that fuzzing the first function in the app’s control flow that
handles user-provided data is ineffective.

For Device ID 1, IoTFuzzer identified a function called
setUser, which sends the user’s login information to the device.
In this case, this function is guarded by a check that forbids the
user’s password to contain some special characters (e.g., “&”).
We fuzzed this function for 24 hours and we did not register any

10

anomaly in the device. Also in this case, DIANE selected a function
deeper in the control flow of the app, after any client-side checks.
This was necessary to successfully discover a (zero-day) bug.

Overall, DIANE performed as well as IoTFuzzer only in two
cases (Device IDs 3 and 6), and it outperformed IoTFuzzer in all
the other cases—either because IoTFuzzer was unable to identify
any meaningful send functions, or because it did not produce any
crash-inducting input.

This evaluation highlights the importance of carefully selecting
the right function to fuzz within the companion app, and that app-
side sanitization checks hinder the efficacy of a fuzzing campaign.
This issue is exacerbated by the frequency in which app-side
sanitization is present in companion apps. For instance (as shown in
Table II), in our dataset we found that at least 7 out of 11 apps con-
tain sanity checks. We further measure this aspect in Section IV-E.

E. App-side Sanitization and Fuzzing Triggers

App-side Sanitization. To evaluate how common app-side
sanitization code is in companion apps, we first manually
reverse-engineered the 11 companion apps of the IoT devices in
our dataset. As shown in the Sanity Checks column of Table II,
at least 7 out of 11 apps contain sanity checks.

As an additional evaluation of this aspect, we performed a
large-scale study on the presence of app-side sanitization code in
companion apps. For this experiment, we used 2,081 apps, which
we gathered from related work [79]. This dataset is ideal for our
evaluation as it specifically contains Android companion apps
of IoT and smart home devices, which have been collected from
the Google Play Store and manually inspected by the authors of
the related work. To the best of our knowledge, this is the largest
dataset of validated IoT companion apps. Since we did not have
access to all the physical devices that these apps interact with, we
could not run DIANE against them, and, therefore, we implemented
a fully-static automated approach, suitable for a large-scale study.

Specifically, given a companion app, we identified its
sendMessage functions by locating functions that contained I/O
operations (as detailed in Appendix A). We were able to identify
sendMessage functions for 1,304 of the apps (~63%). For the
remaining apps, we were not able to statically identify any network-
related operations, as we could not find, for instance, a socket send
operation. Then, we performed an inter-procedural backward slice
from every argument of each identified sendMessage function, and
considered the instructions in each slice. Finally, we counted the
comparisons against constant data (e.g., using a string comparison
in a if statement) in these slices.

In this experiment, we found that 663 (~51%) companion apps
implement sanitization of the data being sent, and that, on average,
the variables handled by a sendMessage function are affected
by 7 checks across the companion app. To validate these results,
we randomly selected 100 sendMessage functions and found
85 to be true positives, 14 to be false positives (these functions
were sending messages to another Android thread), and for 1 of
them we could not determine its functionality, as it was heavily
obfuscated. Also, we randomly sampled 30 functions that we
detected were applying input sanitization code, and found 29 to be
true positives: the companion app applied checks on the user data.

These results show how app-side sanitization code is common
in companion apps. Note that, this experiment is only an
approximation of our approach, which requires the physical
devices to be fully effective. Therefore, these results do not aim
to evaluate our approach, rather they serve as an indication of the
presence of input validation code in mobile apps. Our results are
in line with a recently published study [86].
Fuzzing Triggers. We also evaluated how prevalent fuzzing
triggers are in Android companion apps. As DIANE relies on
dynamic analysis to find fuzzing triggers, we replaced the parts
of our approach that leverage dynamic analysis with symbolic
execution. We used the Java support provided by the angr [71]
tool to symbolically execute the app’s functions in a slice (see
Algorithm 1), so to calculate the Shannon entropy. In particular,
we concretize the input of a function (i.e., its live variables)
with known values, symbolically execute the function, and
observe the values in the output (i.e., its live variables when the
function returns). Then, we replicate our approach explained in
Section III-A, and calculate the difference of entropy introduced
by each function to identify the data-transforming functions.

We sampled 100 apps from the 2,081 aforementioned apps, ran
our analysis, and manually verified the results. For 37 apps, our
analysis found fuzzing triggers, and for the remaining 63, it did not.
We investigated our results and found that our analysis correctly
identified a fuzzing trigger for 25 of the 37 apps, and it produced
false positives in the remaining 12 cases. These false positives were
due to imprecisions in our inter-procedural backward slicer (i.e.,
our static analysis could not find the callers of a given function).

On the other hand, in 63 apps our analysis did not find any
fuzzing trigger because of imprecisions of the symbolic execution.
In fact, to keep the analysis tractable, we symbolically execute every
function up to 10 minutes and follow up to 2 consecutive function
calls (we drop the collected symbolic constraints when a function
call is not followed). As such, when the analysis fails to calculate
the added entropy of a given function, we stop the analysis.

Overall, we found fuzzing triggers for 25% of the analyzed apps.
While this number sufficiently demonstrates that such sweet spots
are, indeed, present in many apps, we highlight that, in our analysis,
this is a lower bound. In fact, our attempt to emulate our approach
using symbolic execution introduces imprecisions that would not
occur when using DIANE together with the real devices. Therefore,
we expect this number to be even higher in practice. This further
emphasizes the need for a system that can identify fuzzing triggers
that are located past client-side checks in the companion apps.

F. DIANE vs. Network-Level Fuzzing

We also compared DIANE to well-known network fuzzers:
BED [2], Sulley [3], uFuzz [13] (UPnP endpoints), and bss [4]
(Bluetooth fuzzer). Table III shows the results of the comparison.
Note that the labels N/A indicate that the corresponding network
fuzzer does not handle the network protocols employed by the
corresponding IoT device.

We configured BED and Sulley as indicated by previous
work [25], and the remaining tools as suggested by their related
web pages. We ran each tool for 24 hours. However, uFuzz
finished its fuzzing cycle before the allocated time, and bss was

11

1 public static String httpRequest(String req, ...){
2 // perform the requested HTTP request
3 }
4 /* Camera class */
5 private Result sendCommand(String cmd, TreeMap t){
6

String fmt = "http://%s/CGIProxy.fcgi?cmd=%s:%s";
7

toSend = String.format(fmt,CAMERA_ENDPOINT, cmd);
8 Iterator it = t.keySet().iterator();
9 while(it.hasNext()) {

10 String key = (String)it.next();
11 String val = (String)t.get(key);
12 toSend

+= "&" + key + "=" + this.encodeUrlParam(val);
13 }
14 String encUser = this.encodeUrl(this.user);
15 String encPwd = this.encodeUrl(this.passwd);
16 fmt = "&usr=%s&pwd=%s"
17 toSend += String.format(fmt, encUser, encPwd);
18 HttpUtil.httpRequest(toSend,"GET",null,10,10);
19 }
20
21 public boolean

changePassword(String user, String newPwd) {
22 TreeMap t = new TreeMap();
23 t.put("usrName", user);
24 t.put("newPwd", newPwd);
25 res = this.sendCommand("changePwd", t).resCode;
26 return res != ResCode.SUCCESS ? false : true;
27 }
28
29 boolean changeCameraUsernamePassword(Camera

cam, String newUsr, String newPwd) { /*...*/ }

Fig. 6. Snippet of code for the Insteon Camera app.

not able to generate input for Device ID 11, as the device does not
accept connections outside the companion app.

Overall, no bugs were found by any of these network fuzzing
tools. The reason why no network fuzzers triggered any crash is
that these fuzzers are general-purpose [83], [68], and they fail to
trigger deeper code paths in the devices’ firmware. For instance,
BED only fuzzes HTTP headers without considering the syntax
or the semantics of HTTP payloads.

G. Case Study: Insteon HD Wifi Camera

In this section, we present a case study regarding two bugs that
DIANE found in the Insteon Camera (Device ID 2). Note that,
these bugs have been fixed in the latest version of the firmware
running on the Insteon camera.

Among the functionality offered by the app, a user
can change their credentials (username and password).
Figure 6 depicts a simplified version of the app’s code that
accomplishes this task (we omit the code of the function
changeCameraUsernamePassword as it is already
shown in Figure 4). In particular, when the user wants
to change their password, the companion app invokes the
function changeCameraUsernamePassword (Line 29). As
explained in Section IV-D, this function first checks that the camera
belongs to a certain camera family, and if so, the app invokes
the function changePassword (Line 21). This function
creates a TreeMap structure containing couples “key:values,”
which will be placed in the request generated by the app. Then,
changePassword invokes the sendCommand function

(Line 5), which is a helper function used to send commands
to the camera. This function prepares the request by using the

1 int key_strcpy(char *dst, char *URI, char *key){
2 int len = 0;
3 char* val = get_ptr_val(URI, key, &len);
4 strncpy(dst, val, len);
5 return 0 ;
6 }

Fig. 7. Simplified snippet of code from Insteon firmware.

TreeMap, and it eventually calls httpRequest (Line 1) to send
the request to the device.

For this particular device, we could gather the firmware running
on the camera (by sniffing the wireless network during the initial
firmware update). Figure 7 shows a simplified version of the
firmware function used to copy the values of parameters from a
given URI. This function acts as an unsafe strcpy: it takes as
input a destination buffer (allocated by the caller function) and
copies the value of a pair “key:value” present in a given URI.
This function is called 789 times within the Insteon firmware,
and, to the best of our knowledge, for 9 of them, we can trigger
a buffer overflow. In particular, when a user wants to change the
camera password, the firmware allocates two buffers on the stack,
and it uses this function to copy the username and new password
values from the URI into the allocated buffers (of 88 and 64 bytes
respectively). As a result, if we provide two values for username
and password large enough, we can trigger two buffer overflows.

By looking at the code in Figure 6 and Figure 4, we can see
that fuzzing the function encodeUrl (Lines 12,14, and 15 in
Figure 6) allows us to i) skip any app-side validation (Line 2 in
Figure 4), and ii) trigger both bugs discovered by IoTFuzzer (as
shown in Section IV-D) and two additional bugs due to a long
username and password.

DIANE identified 9 different sendMessage functions (6 true
positives), and 6 fuzzing triggers (6 true positives) for the Insteon
Camera companion app. Among these, DIANE automatically iden-
tified the function httpRequest as a sendMessage function,
and the function encodeUrl as a fuzzing trigger. When DIANE
fuzzed encodeUrl, DIANE immediately generated an alert.

Finally, note that the sendCommand represents another valid
fuzzing trigger for httpRequest, as it modifies the command
being sent. Indeed, DIANE correctly identified sendCommand
as a further fuzzing trigger.

H. Runtime Performance

We assessed the runtime performance of our tool by measuring
the execution time required by the fuzzing triggers identification
phase. In our experiments, we setup DIANE to run the fuzzing
phase for 24 hours. First, we measured the entire execution time
required, on average, for DIANE to analyze an app and identify
fuzzing triggers. DIANE analyzes a given app in slightly less than
150 minutes on average. Figure 8 shows the average and standard
deviation of the execution time required for each phase of our
analysis process. As shown in Figure 8, the execution time of
DIANE has a high standard deviation. This is due to the following
implementation detail: Frida, which we leverage to hook Android
APIs and methods at runtime, sometimes fails, causing the running
app to crash. This requires automatically restarting the hooking
procedure, randomly slowing down DIANE.

12

S
SM FTAll

0

100

200

Ex
ec

.T
im

e
(m

in
)

Fig. 8. Average and standard deviation of the execution time of the
phases that DIANE performs (S = Setup, SM = sendMessage functions
Identification, FT = Fuzzing Trigger Identification).

I. Quantifying Required Human Effort

We evaluated the human effort required to use DIANE. In general,
DIANE scales linearly with the number of analyzed devices, as
it requires the analyst to perform the same steps for each new
analyzed device. DIANE requires human intervention to setup a
new IoT device. During this phase, an analyst has to install the IoT
device, which involves installing the companion app, configuring
the device, and, in some cases, registering an online account. In ad-
dition, during this phase, DIANE requires the analyst to run the app
and test the basic functionality of the IoT device, so that our tool can
record the generated UI interactions (see Section III). We measured
the time we spent to setup each device, as reported in Table I. On
average, we spent 6 minutes and 12 seconds to setup a new IoT
device, of which 41 seconds were spent to interact with the device.
Note that, an analyst has to take these steps only once per device.

Human effort is also required if the analyst desires to monitor the
state of the watchdog device during fuzzing (recall Section III-B).
The watchdog device is optional and useful if the analyst wants
to detect semantic issues. In this case, the analyst has to check
whether the functionality automatically exercised by the watchdog
device results in an undesired effect in the IoT device due to our
fuzzer triggering a vulnerability (e.g., unauthenticated requests
suddenly open a door lock). The frequency of these manual
checks depends on the analyst, as they might want to monitor the
watchdog device at regular intervals for the whole duration of the
fuzzing campaign, or only at the end of it. In our fuzzing campaign
we checked the watchdog device approximately every two hours.
In our experiments, we needed the watchdog device only to detect
the issue for Device ID 11, as explained in Section IV-C. The other
10 bugs were automatically detected by DIANE by monitoring the
network traffic, as explained in Section III-B.

When a bug is detected, DIANE generates an alert. In this case,
an analyst may want to manually reproduce and verify the bug
triggering the alert. DIANE allows this manual verification, since
it produces as output the input triggering the detected bug. With
this information in hand, the analyst can use DIANE to send the
crashing input to the analyzed IoT device. Then, the analyst can
manually check the device functionality to assess if it misbehaves
after receiving the crashing input (e.g., the device reboots or does
not reply to further requests). In our evaluation, we needed about
6 minutes, on average, to follow this procedure and verify each
alert produced by DIANE.

V. LIMITATIONS AND FUTURE WORK

While we addressed the major challenges for performing
black-box fuzzing of IoT devices, our overall approach and the
implementation of DIANE still have some limitations.

We currently cannot bypass app-side sanity checks when they
are implemented in native code, in a data-transforming function
or directly in a sendMessage function. Though we acknowledge
that such checks could be present in any of these classes of code,
we manually verified that none of the apps in our dataset contain
sanity checks in any of these categories. In fact, as shown by
previous work [16], native code is typically not used to implement
the main application’s logic, but it is used, instead, in library helper
functions Also, note that, differently from previous work, this
does not mean that DIANE cannot handle native code at all. In
fact, even if the sendMessage function is implemented natively,
DIANE can identify it and fuzz its fuzzing triggers. However, if
sanity checks are present in any of the aforementioned classes of
code, the fuzzing is less effective.

As any approach based on dynamic analysis, DIANE suffers
from limited code coverage, i.e., it cannot identify fuzzing triggers
that are not executed by the app. To mitigate this limitation,
we manually stimulate the apps to trigger most of the available
functionality, and we perform our analysis on real smartphones.

The current implementation of DIANE cannot fuzz nested Java
objects. We plan to address this in future work.

DIANE could be enhanced to automatically discover semantic
vulnerabilities (e.g., a smart lock unlocks a door instead of locking
it). Currently, this feature is semi-automatic as it requires the
analyst to check and interact with the watchdog device.

VI. RELATED WORK

IoT devices are plagued with vulnerabilities [59], [48], [27],
[18]. Consequently, different automated vulnerability detection
tools [31], [32], [70], [71] have been proposed, relying on static
analysis techniques. Unfortunately, the applicability of these tools
is limited since they require the device firmware.

Dynamic analysis, and in particular fuzzing [60], is a popular
alternative technique that mitigates the problems of static analysis
at the cost of missing potential bugs. American Fuzzy Lop
(AFL) [85], along with its several improved versions [19], [20],
[56], [35], [67], is the most popular coverage-guided fuzzing tool.

However, coverage-guided fuzzing is hard to perform on real
devices, as it requires to keep track of the code locations reached
while fuzzing the analyzed firmware. It is possible to perform
this tracking using hardware debugging capabilities [72], but,
unfortunately, they are usually disabled in consumer devices [55],
[61], [25]. Other approaches have proposed to fuzz IoT devices
by emulating the corresponding firmware [87], [73], [43], [24],
[42]. Unfortunately, a faithful emulation of a firmware image is
a hard problem, and these approaches have scalability issues.

Input generation is one fundamental capability underpinning
any fuzzing technique. Taint tracking [44], [36], [26], symbolic
execution [22], [38], [39], [23], [74], [62] and static analysis [57],
[69] have been commonly used to handle the problem of input
generation. Unfortunately, all of these techniques require to
instrument the analyzed firmware code.

13

Grammar-based fuzzing techniques [66], [77] side-step the prob-
lem of input generation by requiring a model of the inputs [41], [46],
[37], [54], [33] accepted by the program under test. Consequently,
techniques based on static analysis [30] and dynamic analysis [58],
[28], [45] have been developed to create models of valid inputs ac-
cepted by the analyzed software. However, these approaches are not
suitable to fuzz IoT devices, as user requests are usually encrypted
by the companion app, and devices might rely on ad-hoc grammars.

DIANE solves the problem of input generation by using network
traffic and hybrid analysis of the app controlling the target IoT
device. Recently, Chen et al. proposed IoTFuzzer [25]. IoTFuzzer
analyzes the IoT device’s APK, and automatically finds paths
where user-generated input is handled. Then, for each of them,
it fuzzes the arguments of the first function handling such data.
While IoTFuzzer shares some similarities with our approach,
it suffers from a number of drawbacks, which we discussed in
detail in Section II. Wang et al. [79] leverage an IoT device’s
companion app to detect the characteristics of the device (e.g.,
a smart plug), and infer its vulnerabilities by relying on a set of
known vulnerabilities affecting similar devices. However, their
approach does not find unknown vulnerabilities.

RPFuzzer [81] finds vulnerabilities in router protocols. However,
its techniques are customized to find routing-related issues, and
are not applicable to generic IoT devices.

Peng et al. [67] recently proposed T-Fuzz, an approach for input
generation that first transforms the target program to skip checks on
input values, and then fuzzes the transformed program. T-Fuzz goal
is to increase code coverage by bypassing input validation – T-Fuzz
flips the if-conditions guarding those branches where the fuzzer
gets stuck. However, T-Fuzz is not suitable for our scenario, since it
requires access to the hardly available firmware of the IoT device.

T-Fuzz could be used to fuzz the companion app. However, our
goal is not to increase our coverage of the companion app, but to
identify fuzzing triggers and use them to fuzz the code running
in the analyzed IoT device. In fact, T-Fuzz flips if-conditions
without considering whether they are part of sanitization functions
or data-transforming functions. As such, T-Fuzz would inevitably
modify parts of the companion app’s code that are essential in
producing valid inputs for the IoT device. Therefore, applying
the T-Fuzz approach on a companion app will not increase the
effectiveness of the fuzzing of the controlled IoT device. For
this reason, we need an approach like DIANE, which is able to
selectively determine the checks to be bypassed.

Similarly, Wang et al. [78] proposed TaintScope, a directed
checksum-aware fuzzing approach that bypasses sanity checks to
penetrate deeper in the analyzed program. As such, TaintScope
prevents generated test cases from being prematurely dropped
by integrity checks on the targeted program. However, this tool
is applicable only when the firmware of the device is available.
When the firmware is available, other dynamic analysis tools
like AVATAR [84], SURROGATES [52], FIRM-AFL [87], and
FirmaDyne [24] could be used to improve the effectiveness of
vulnerability identification. On the other hand, we performed our
evaluation on real devices, without the need for firmware.

Data-flow tracking tools could be helpful to identify our fuzzing
triggers. Dynamic analysis tools track interactions within the

Dalvik [34] or the ART [75] runtime. However, it is not trivial to
extend these techniques to apps containing native code.

Ispoglou et al.[47] proposed FuzzGen, a tool to automatically
generate fuzzing harnesses for libraries. Unfortunately, this
approach is not directly applicable to our usage scenario. In
particular, FuzzGen requires the code of the library it generates the
harness for. Therefore, it cannot be applied to IoT devices, since
their code is typically unavailable. FuzzGen’s approach could be
used to generate fuzzing harnesses for the libraries used by the
companion apps. However, this approach would not be effective
in generating inputs targeting the analyzed IoT device. In fact,
in companion apps, the logic to prepare and send well-structured
messages to the controlled IoT device is usually implemented in
the core of the companion app itself, rather than in its libraries.

For known protocols, network-based approaches like BED [2],
Katyusha [12], WSFuzzer [14] could be used to perform fuzzing.
However, extending them to custom data formats used by IoT
devices is non-trivial given the heterogeneity of these devices.
Furthermore, these tools cannot handle challenge-response
sequences [21], heavily limiting their fuzzing effectiveness.

Finally, Junior et al. [50] assessed the security of the
communication channels between IoT devices and their companion
apps, identifying several flaws (e.g., lack of authentication).

VII. CONCLUSIONS

In this paper, we studied the effectiveness of IoT device fuzzers.
On the one hand, randomly fuzzing network packets sent to the
devices requires knowledge about the data format accepted by a de-
vice, which is seldom available when devices use custom firmware.
On the other hand, approaches that leverage the UI of the compan-
ion mobile app to produce syntactically correct messages are inef-
fective because of the constraints that the app-side code imposes.

Conversely, we proposed a novel approach that sits in the sweet
spot between network-level fuzzing and UI-level fuzzing. Our
approach aims at identifying fuzzing triggers, which are portions
of code in the IoT companion apps that are executed after input
validation and right before any data-transforming function, and that
maximize the fuzzing outcome. We implemented our approach in
a tool, called DIANE, and evaluated it on 11 real-world IoT devices
of different brands. DIANE outperforms the current state-of-the-art
approach, and it can successfully detect critical bugs (9 zero-days)
that cannot be triggered by existing fuzzers.

ACKNOWLEDGEMENTS

We would like to thank our reviewers for their valuable
comments and inputs to improve our paper. This material is based
upon work supported by AFRL under Award No. FA8750-19-
C-0003, and by ONR under Awards No. N00014-17-1-2011 and
N00014-17-1-2897. Research was also sponsored by DARPA
under agreement number HR001118C0060. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
DARPA, the U.S. Government, or the other sponsors.

14

REFERENCES

[1] “500 internal server error,” https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status/500.

[2] “bed - A network protocol fuzzer,” https://tools.kali.org/vulnerability-
analysis/bed.

[3] “boofuzz: Network Protocol Fuzzing for Humans, successor to the venerable
Sulley fuzzing framework,” https://github.com/jtpereyda/boofuzz.

[4] “BSS (Bluetooth Stack Smasher) Fuzzer,” https://securiteam.com/tools/
5NP0220HPE/.

[5] “CVE Database for Iot Vulns1,” https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=router.

[6] “CVE Database for Iot Vulns2,” https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=belkin.

[7] “CVE Database for Iot Vulns3,” https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=smart-home.

[8] “Frida: Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers.” https://frida.re/docs/android/.

[9] “Jtag debugging,” https://blog.attify.com/hack-iot-device/.
[10] “Jtag fuse and protection using a trusted execution environment,”

http://www.freepatentsonline.com/9021585.html.
[11] “Jtag fuse flow,” https://e2e.ti.com/support/microcontrollers/msp430/f/166/

t/18936?JTAG-FUSE-BLOW.
[12] “Katyusha rest and soap fuzzer,” https://github.com/lpredova/Katyusha.
[13] “UFuzz, or Universal Plug and Fuzz, is an automatic UPnP fuzzing tool.”

https://github.com/phikshun/ufuzz.
[14] “Web services fuzzing tool for http and soap,” https://sourceforge.net/projects/

wsfuzzer/files/.
[15] “Debugging Bluetooth With An Android App,” https://blog.bluetooth.com/

debugging-bluetooth-with-an-android-app, 2016.
[16] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,

C. Kruegel, and G. Vigna, “Going native: Using a large-scale analysis of
android apps to create a practical native-code sandboxing policy,” in The
Network and Distributed System Security Symposium, 2016, pp. 1–15.

[17] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2019.

[18] Ben Herzberg, Dima Bekerman, Igal Zeifman, “Breaking Down Mirai: An
IoT DDoS Botnet Analysis,” https://www.incapsula.com/blog/malware-
analysis-mirai-ddos-botnet.html.

[19] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 2329–2344.

[20] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in Proceedings of the 2016 ACM Conference
on Computer and Communications Security, ser. CCS ’16. New
York, NY, USA: ACM, 2016, pp. 1032–1043. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978428

[21] R. M. Bolle, J. H. Connell, and N. K. Ratha, “System and method for liveness
authentication using an augmented challenge/response scheme,” Feb. 1 2005,
uS Patent 6,851,051.

[22] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe:
Automatically generating inputs of death,” in Proceedings of the 2006
ACM Conference on Computer and Communications Security, ser. CCS
’06. New York, NY, USA: ACM, 2006, pp. 322–335. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180445

[23] G. Campana, “Fuzzgrind: un outil de fuzzing automatique,” Actes du, pp.
213–229, 2009.

[24] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in NDSS, 2016.

[25] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing,” in Proc. of the ISOC Network and Distributed
System Security Symposium (NDSS), 2018.

[26] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” arXiv
preprint arXiv:1803.01307, 2018.

[27] Chris Brook, “TRAVEL ROUTERS, NAS DEVICES AMONG EASILY
HACKED IOT DEVICES,” https://threatpost.com/travel-routers-nas-devices-
among-easily-hacked-iot-devices/124877/.

[28] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in Proceedings of the 2009 IEEE
Symposium on Security and Privacy, ser. SP ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 110–125. [Online]. Available:
http://dx.doi.org/10.1109/SP.2009.14

[29] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel,
and G. Vigna, “Obfuscation-resilient privacy leak detection for mobile apps
through differential analysis,” in Proceedings of the ISOC Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February 2017.

[30] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and
G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2123–2138.

[31] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis, “A
large-scale analysis of the security of embedded firmwares.” in USENIX
Security Symposium, 2014, pp. 95–110.

[32] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “Fie on firmware: Finding
vulnerabilities in embedded systems using symbolic execution,” in USENIX
Security Symposium, 2013, pp. 463–478.

[33] K. Dewey, J. Roesch, and B. Hardekopf, “Fuzzing the rust typechecker using
clp (t),” in Proceedings of the 2015 IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 482–493. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2015.65

[34] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,” ACM Transactions
on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[35] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl: Path
sensitive fuzzing,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 679–696.

[36] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,”
in Proceedings of the 2009 International Conference on Software Engineering,
ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
474–484. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070546

[37] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’08.
New York, NY, USA: ACM, 2008, pp. 206–215. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375607

[38] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[39] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox fuzz
testing.” in Proceedings of the 2008 Symposium on Network and Distributed
System Security, ser. NDSS ’08, San Diego, CA, USA, 2008.

[40] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and touch-
sensitive record and replay for android,” in Proceedings of the 2013 Interna-
tional Conference on Software Engineering. IEEE Press, 2013, pp. 72–81.

[41] G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An automatic random
fuzzer for common file formats,” in Proceedings of the 2016 International
Symposium on Haskell, ser. Haskell ’16. New York, NY, USA: ACM, 2016,
pp. 13–20. [Online]. Available: http://doi.acm.org/10.1145/2976002.2976017

[42] Z. Gui, H. Shu, and J. Yang, “Firmnano: Toward iot firmware fuzzing through
augmented virtual execution,” in 2020 IEEE 11th International Conference
on Software Engineering and Service Science (ICSESS), 2020, pp. 290–294.

[43] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel,
and G. Vigna, “Toward the analysis of embedded firmware through
automated re-hosting,” in 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019). Chaoyang District,
Beijing: USENIX Association, Sep. 2019, pp. 135–150. [Online]. Available:
https://www.usenix.org/conference/raid2019/presentation/gustafson

[44] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowser: a guided
fuzzer to find buffer overflow vulnerabilities,” in Proceedings of the 2013
USENIX Security Symposium, ser. SEC ’13, Washington, DC, USA, 2013,
pp. 49–64.

[45] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2345–2358.

[46] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments.” in
Proceedings of the 2012 USENIX Security Symposium, ser. SEC ’12,
Bellevue, WA, USA, 2012, pp. 445–458.

[47] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen: Automatic
fuzzer generation,” in 29th USENIX Security Symposium (USENIX Security
20). Boston, MA: USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou

15

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://tools.kali.org/vulnerability-analysis/bed
https://tools.kali.org/vulnerability-analysis/bed
https://github.com/jtpereyda/boofuzz
https://securiteam.com/tools/5NP0220HPE/
https://securiteam.com/tools/5NP0220HPE/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=router
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=router
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=belkin
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=belkin
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=smart-home
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=smart-home
https://frida.re/docs/android/
https://blog.attify.com/hack-iot-device/
http://www.freepatentsonline.com/9021585.html
https://e2e.ti.com/support/microcontrollers/msp430/f/166/t/18936?JTAG-FUSE-BLOW
https://e2e.ti.com/support/microcontrollers/msp430/f/166/t/18936?JTAG-FUSE-BLOW
https://github.com/lpredova/Katyusha
https://github.com/phikshun/ufuzz
https://sourceforge.net/projects/wsfuzzer/files/
https://sourceforge.net/projects/wsfuzzer/files/
https://blog.bluetooth.com/debugging-bluetooth-with-an-android-app
https://blog.bluetooth.com/debugging-bluetooth-with-an-android-app
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
http://doi.acm.org/10.1145/2976749.2978428
http://doi.acm.org/10.1145/1180405.1180445
https://threatpost.com/travel-routers-nas-devices-among-easily-hacked-iot-devices/124877/
https://threatpost.com/travel-routers-nas-devices-among-easily-hacked-iot-devices/124877/
http://dx.doi.org/10.1109/SP.2009.14
http://dx.doi.org/10.1109/ASE.2015.65
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://doi.acm.org/10.1145/1375581.1375607
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/2976002.2976017
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou

[48] James Lyne, “Uncovering IoT Vulnerabilities in a CCTV
Camera,” https://www.rsaconference.com/videos/demo-uncovering-
iot-vulnerabilities-in-a-cctv-camera.

[49] L. Jost, “Entropy and diversity,” Oikos, vol. 113, no. 2, pp. 363–375, 2006.
[50] D. M. Junior, L. Melo, H. Lu, M. d’Amorim, and A. Prakash, “Beware of the

app! on the vulnerability surface of smart devices through their companion
apps,” arXiv preprint arXiv:1901.10062, 2019.

[51] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai
and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[52] K. Koscher, T. Kohno, and D. Molnar, “Surrogates: Enabling near-real-time
dynamic analyses of embedded systems.” in WOOT, 2015.

[53] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov, R. Gupta,
and Z. Durumeric, “All things considered: An analysis of iot devices on home
networks,” in 28th {USENIX} Security Symposium ({USENIX} Security 19),
2019, pp. 1169–1185.

[54] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided stochastic
program mutation,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’15. New York, NY, USA: ACM, 2015, pp.
386–399. [Online]. Available: http://doi.acm.org/10.1145/2814270.2814319

[55] K. Lee, Y. Lee, H. Lee, and K. Yim, “A brief review on jtag security,” in 2016
10th International Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), July 2016, pp. 486–490.

[56] C. Lemieux and K. Sen, “Fairfuzz: Targeting rare branches to rapidly
increase greybox fuzz testing coverage,” CoRR, vol. abs/1709.07101, 2017.
[Online]. Available: http://arxiv.org/abs/1709.07101

[57] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix:
Program-state based binary fuzzing,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: ACM, 2017, pp. 627–637. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106295

[58] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 2010 Annual
Information Security Symposium, ser. CERIAS ’10. West Lafayette,
IN: CERIAS - Purdue University, 2010, pp. 5:1–5:1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2788959.2788964

[59] Lucian Constantin, “Hackers found 47 new vulnerabilities in 23 IoT devices
at DEFCON,” https://www.csoonline.com/article/3119765/security/hackers-
found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html.

[60] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability
of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.
[Online]. Available: http://doi.acm.org/10.1145/96267.96279

[61] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What
you corrupt is not what you crash: Challenges in fuzzing embedded devices,”
in NDSS 2018, Network and Distributed Systems Security Symposium, 18-21
February 2018, San Diego, CA, USA, San Diego, UNITED STATES, 02
2018. [Online]. Available: http://www.eurecom.fr/publication/5417

[62] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos, “The
borg: Nanoprobing binaries for buffer overreads,” in Proceedings of the
2015 ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’15. New York, NY, USA: ACM, 2015, pp. 87–97. [Online].
Available: http://doi.acm.org/10.1145/2699026.2699098

[63] F. Nielson, H. Riis Nielson, and C. Hankin, Principles of Program Analysis,
01 1999.

[64] A. Nordrum, “The internet of fewer things [news],” IEEE Spectrum, vol. 53,
no. 10, pp. 12–13, 2016.

[65] J. Palsberg and M. I. Schwartzbach, Object-oriented type inference. ACM,
1991, vol. 26, no. 11.

[66] Peach, “The peach fuzzer,” 2017, http://www.peachfuzzer.com/.
[67] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program

transformation,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2018.

[68] P. Pokorny and M. Royal, “Dumb fuzzing in practice,” 2012.
[69] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer:

Application-aware evolutionary fuzzing,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[70] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-binary
interactions in embedded firmware,” in Proceedings of the IEEE Symposium
on Security and Privacy (S&P), May 2020.

[71] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice-
automatic detection of authentication bypass vulnerabilities in binary
firmware.” in NDSS, 2015.

[72] M. Smith, M. Helmi, and J. Miller, “Comparison of approaches to use existing
architectural features in embedded processors to achieve hardware-assisted
test insertion,” Proceedings Work-in-Progress Session, 2010.

[73] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “FirmFuzz:
Automated IoT Firmware Introspection and Analysis,” in Proc. ACM CCS
Workshop on IoT Security and Privacy (IoT S&P), 2019.

[74] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing
Through Selective Symbolic Execution,” in Proceedings of the 2016 Network
and Distributed System Security Symposium, ser. NDSS ’16, San Diego, CA,
USA, 2016.

[75] M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-level information-flow
tracking system for android runtime,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2016, pp. 331–342.

[76] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundare-
san, “Optimizing java bytecode using the soot framework: Is it feasible?” in In-
ternational conference on compiler construction. Springer, 2000, pp. 18–34.

[77] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed generation
for fuzzing,” in 2017 IEEE Symposium on Security and Privacy (SP), May
2017, pp. 579–594.

[78] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Proceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP
’10. San Jose, CA, USA: IEEE, 2010, pp. 497–512.

[79] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
Evaluating iot device security through mobile companion apps,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 1151–1167. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang

[80] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “Reformat: Automatic
reverse engineering of encrypted messages,” in Computer Security –
ESORICS 2009, M. Backes and P. Ning, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 200–215.

[81] Z. Wang, Y. Zhang, and Q. Liu, “Rpfuzzer: A framework for discovering
router protocols vulnerabilities based on fuzzing.” KSII Transactions on
Internet & Information Systems, vol. 7, no. 8, 2013.

[82] H. Wen, Q. Zhao, Q. A. Chen, and Z. Lin, “Automated Cross-Platform Reverse
Engineering of CAN Bus Commands From Mobile Apps,” in Proceedings of
the ISOC Network and Distributed System Security Symposium (NDSS), 2020.

[83] T. Wilson, “Evaluation of fuzzing as a test method for an embedded system,”
2018.

[84] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A framework
to support dynamic security analysis of embedded systems’ firmwares.” in
NDSS, 2014.

[85] M. Zalewski., “American fuzzy lop,” 2017, http://lcamtuf.coredump.cx/afl/
technical_details.txt.

[86] Q. Zhao, C. Zuo, D.-G. Brendan, G. Pellegrino, and Z. Lin, “Automatic
uncovering of hidden behaviors from input validation in mobile apps,” 2020.

[87] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl: High-
throughput greybox fuzzing of iot firmware via augmented process emulation,”
in 28th USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 1099–1114. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

[88] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
“Discovering and understanding the security hazards in the interactions
between iot devices, mobile apps, and clouds on smart home platforms,”
in 28th USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 1133–1150. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou

APPENDIX

In this appendix, we provide technical details about DIANE’s
different components. We implemented DIANE in about 4,500
lines of Python code, following the high-level architecture depicted
in Figure 2. DIANE is implemented on top of pysoot 4, which
leverages Soot [76] to translate the companion app’s bytecode
into an intermediate representation. DIANE currently only handles
Android applications.

4https://github.com/angr/pysoot/

16

https://www.rsaconference.com/videos/demo-uncovering-iot-vulnerabilities-in-a-cctv-camera
https://www.rsaconference.com/videos/demo-uncovering-iot-vulnerabilities-in-a-cctv-camera
http://doi.acm.org/10.1145/2814270.2814319
http://arxiv.org/abs/1709.07101
http://doi.acm.org/10.1145/3106237.3106295
http://dl.acm.org/citation.cfm?id=2788959.2788964
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
http://doi.acm.org/10.1145/96267.96279
http://www.eurecom.fr/publication/5417
http://doi.acm.org/10.1145/2699026.2699098
http://www.peachfuzzer.com/
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://github.com/angr/pysoot/

A. Static Analysis

To find the initial set of sendMessage candidates within
a companion app, we analyze its internal representation. In
particular, we select all those functions that either contain calls
(Soot intermediate-representation invoke instructions) to native
methods (having the native attribute) or calls to methods in the
Android framework known to implement network I/O operations
(e.g., java.net.*, javax.net.*, or android.net.*).
By applying these rules, we obtain a list of functions that, when
invoked, potentially send network messages to the IoT device.

B. Dynamic Analysis

APK Instrumentation. To hook methods of the APK under
analysis and to fuzz them, we use Frida [8]. More precisely, each
method is hooked and dynamically modified to include additional
code. This injected additional code is used to enable fuzzing of
the method arguments and of the used class fields and to extract
information necessary for our analysis, such as the timestamp
when the method is invoked and the contents of its parameters.
Network Interception. DIANE intercepts the network traffic
generated by the companion app at runtime. DIANE supports the
interception of traffic sent using both the WiFi and Bluetooth
interfaces. Note that our approach is independent of the specific
network medium and only requires to passively observe the
communication channel without accessing the content of the
exchanged data. For traffic transmitted over WiFi, DIANE leverages
a router and the tool tcpdump to capture the packets sent from
the smartphone to the IoT device, filtering the IP addresses. Traffic
transmitted using the Bluetooth interface is instead captured using
the Bluetooth HCI snoop Android debugging functionality [15].
Unless otherwise specified, we use the term network activity to
refer both to WiFi and Bluetooth network traffic.
Fuzzing Objects. DIANE fuzzes both primitive variables (e.g.,
int, float) and class instances. To do this we use pysoot to
retrieve the class definition of the considered class instances, and
we fuzz each field whose type is either primitive or known (e.g.,
java.lang.String).

C. Hybrid Analysis

Fuzzing Trigger Identification Details. To implement the fuzzing
triggers algorithm described in Section III-A, we implemented a
static inter-function backward slicer on top of pysoot. Theoretically,
the backward slice of a given variable might traverse an arbitrary
number of functions. Therefore, to keep our analysis tractable, our
backward slicer algorithm adopts a conservative approach.

Specifically, when calculating the backward slice of a variable
v, our backward slicer traverses up to N consecutive function calls
(we set N to five in our experiments), and it over-approximates data
dependencies when a function call is not followed. For instance, if
a function call takes v as one of its arguments, and the function call
is not followed, we assume that v is data-dependent on all the other
arguments. Although this approach might lead our static analysis
phase to produce false positives, it does not affect the performance
of our tool, since, as explained in Section III-A, we use dynamic
analysis to validate the results produced by static analysis.

To build the data-transforming function dominator trees, as
explained in Section III-A, we first need to build the companion
app call graph. To achieve this, we perform intra-procedural type
inference [65] to determine the possible dynamic types of the object
on which a method is called. When this fails, we over-approximate
the possible targets as all the subclasses of its static type.
Entropy Calculation Details. To find data-transforming functions,
DIANE needs to calculate the entropy of each variable v within
the live sets Lif and Lof of a function scope f . To achieve
this, if v is a primitive variable (e.g., int), or a known type
(i.e., String, Integer, Float, and Double), we convert
the data it contains in its byte representation and calculate the
Shannon entropy of this sequence of bytes. Note that the entropy
is computed on the entire sequence of bytes, rather than the single
bytes considered separately.

Conversely, if v is a class object, we use pysoot to retrieve its
class definition, and we consider each field variable vc whose
type is either primitive or known. For all these field variables, we
compute their entropy as specified above, and we add them to the
Lif set or to the Lof set, based on to which live set v belongs.

17

	Introduction
	Motivation
	Approach
	Fuzzing Trigger Identification
	Fuzzing

	Experimental Evaluation
	Dataset & Environment Setup
	Fuzzing Trigger Identification
	Vulnerability Finding
	Diane vs. IoTFuzzer
	App-side Sanitization and Fuzzing Triggers
	Diane vs. Network-Level Fuzzing
	Case Study: Insteon HD Wifi Camera
	Runtime Performance
	Quantifying Required Human Effort

	Limitations and Future Work
	Related Work
	Conclusions
	References
	Appendix
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis

