
Divak: Non-invasive Characterization of
Out-Of-Bounds Write Vulnerabilities

Linus Hafkemeyer1, Jerre Starink2, Andrea Continella2

1 TU Delft 2 University of Twente
linus.hafkemeyer@pm.me, {j.a.l.starink,a.continella}@utwente.nl

Abstract. Despite the high level of automation that fuzzing has brought
into the vulnerability research process, the assessment of a discovered
vulnerability’s implications mostly requires human expertise and intu-
ition. A promising approach to reduce such a manual effort is the auto-
matic extraction of vulnerability characteristics that provide vital clues
for exploitability. In this work, we focus on out-of-bounds write vulnera-
bilities and investigate how to automatically distill the set of source code-
level objects affected by such unintended writes. As this poses unique
challenges with regard to the invasiveness of the analysis methods, we
propose a novel approach that enables monitoring a compiled program for
spatial memory safety violations without the need for heavy instrumen-
tation. We implement Divak, a prototype of our design, and we evaluate
it on both benchmarks and real-world vulnerabilities, showing that its
detection and characterization capabilities outperform instrumentation-
based tools in several scenarios, at the cost of an increased overhead.

Keywords: Vulnerability Analysis · Out-of-bounds Writes.

1 Introduction

Out-of-bounds (OOB) writes [1] are still regarded as one of the most dangerous
types of software vulnerabilities [22]. Over the years, a vast number of defenses
against OOB writes and other memory corruption bugs have been proposed. Pre-
ventive approaches such as the deprecation of unsafe functions [16] and memory-
safe languages [19,12] reduce the risk but cannot solve the problem without full
adoption. Mitigation approaches introduced into operating systems and compil-
ers complicate or prevent exploitation [9,27], but attackers continue to find ways
for evading them. Detection approaches based on static and dynamic analysis
have been hugely successful [11]. However, only a relatively small share of dis-
covered bugs has relevant security implications. Thus, further investigation into
the severity of discovered bugs and prioritization for patching is essential.

As triaging, root cause analysis, and patching of discovered bugs are usually
conducted manually by humans, this is often an expensive and time-consuming
process, causing potentially severe vulnerabilities to remain unpatched for a
long time. Therefore, further automating the process that follows the discovery
of a bug can substantially decrease the time required to develop a patch. Un-
fortunately, this process is often an intricate task that largely relies on human
expertise and intuition, making full automation difficult.



2 Linus Hafkemeyer, Jerre Starink, Andrea Continella

Recent research [32] has shown that partial automation is a promising al-
ternative to approaches based on fully Automatic Exploit Generation (AEG)
[3,5,14,15,40]. By automatically distilling characteristics of a vulnerability that
are decisive for its exploitability, experts can base their assessment of the bug’s
security implications on a concise high-level summary, accelerating the triaging
process. Besides, AEG based on human-interpretable vulnerability characteris-
tics can make intermediate results substantially more helpful for manual analysis.

We study how to automatically distill such characteristics of OOB writes
from programs. In contrast to the state-of-the-art, we aim to extract capabilities
that are truthful to the form in which the program under test is deployed in
practice, thus revealing vulnerability characteristics that are relevant not only
in laboratory or debugging settings but for the program’s real-world usage. We
realize this by developing a system that takes a program under test together with
an input that is suspected of causing an OOB write and dynamically performs
fine-grained monitoring for OOB writes, mapping affected memory regions to
the corresponding source code-level entities and reporting the results in a concise
and easily interpretable form. Our system is meant to assist security analysts
in triaging potential OOB write vulnerabilities, automating their identification
and capability extraction phase.

Designing such a system comes with three main challenges: (1) Many ap-
proaches are invasive due to heavy instrumentation, modifying the memory lay-
out and runtime behavior of the program and thus making insights inapplicable
to the original program; (2) The compilation to machine code causes large parts
of source code semantics to be lost, including entities like variables and data
types, as well as information on which entity a specific write to memory is
intended to modify according to the program semantics. However, this informa-
tion is vital for detecting OOB writes, and is essential for achieving easy inter-
pretability of the results; (3) Modern compilers perform optimizations during
compilation to increase the program’s efficiency, which often causes substantial
modifications to the program’s machine code-level structure and memory layout.

To address such challenges, we propose a new approach for the dynamic
characterization of OOB write vulnerabilities in C programs. Contrary to exist-
ing works, our approach does not modify the program through instrumentation
and, as such, is entirely non-invasive. Instead, we provide a conceptual frame-
work for making source code-level semantic information available to our low-level
OOB write-checking technique. As the issue of invasiveness predominantly con-
cerns the stack and global sections, we only focus on the characterization of
OOB write vulnerabilities within these regions of programs written in C, com-
piled with Clang for Linux on AMD64 platforms, and leave out heap-based OOB
writes from our analysis. We implement our approach in a system named Divak,
which achieves a detection rate of 89% on the RIPE benchmark [39], compared
to the 70% and 34% achieved by the instrumentation-based current state-of-the-
art approaches ASan and SoftBound—at the cost of an increased execution time
overhead, along with a slightly increased chance of false positives. Ultimately,
Divak precisely highlights the source code-level objects affected by OOB writes,
assisting humans in triaging potential vulnerabilities.



Non-invasive Characterization of OOB Write Vulnerabilities 3

1 struct userEntry {
2 char username[32];
3 int id;
4 bool isAdmin;
5 };

6 void login(struct userEntry* userPtr) {
7 struct userEntry user = *userPtr;
8 char realPw[32], tryPw[32]; bool pwOk;
9 getUserPassword(&user, realPw);

10 fgets(tryPw, 32, stdin);
11 if (pwOk = !strcmp(realPw, tryPw))
12 setUserLoggedIn(&user);
13 }

Fig. 1: Motivating example.

Contributions. We make the following contributions:
– We introduce a technique for low-level bounds-checking by leveraging the in-

termediate program representation during compilation, overcoming the lack
of source code-level semantic information.

– We design a non-invasive OOB write characterization approach able to triage
spatial memory safety violations on the stack and in the global sections.

– We implement Divak and we evaluate it on artificial benchmarks and real-
world vulnerabilities, showing its advantages over state-of-the-art tools.

We make our dataset and code available: https://github.com/utwente-scs/divak.

2 Motivation

No existing tool for detecting OOB writes is suitable for characterizing their
capabilities and identifying their source code-level consequences. In fact, for our
scenario, i.e., triaging potential vulnerabilities in real conditions, all publicly
available approaches suffer from one or more of the following limitations.

Inability to detect intra-object OOB writes. Many approaches cannot
detect intra-object OOB writes within composite objects such as structures
[29,8,31,37,20,41]. However, intra-object OOB writes are well capable of induc-
ing security issues and need proper triaging, as is illustrated in Figure 1. Here,
an overflow of username can corrupt the isAdmin flag, enabling a non-control
data attack. Thus, their inclusion in a vulnerability’s capability profile is critical.

Required hardware support. Some approaches [26,30,8] rely on extensions to
the ISA of the CPU to perform OOB write detection. While such ISA extensions
are available for SPARC [30], ARM64 [8], and some historic Intel AMD64 CPUs
[26], they are not included in the ISA of any recent AMD64 CPUs.

Invasive modification of the program. Existing approaches significantly
affect the program’s memory layout due to their instrumentation. Such modifi-
cations fall into the following categories: (1) Introduction of poisoned red zones
around memory objects; (2) Introduction of new memory regions to store meta-
data, e.g., as shadow memory; (3) Direct and indirect modification of stack
frames caused by storing metadata and performing checks. Consider the snip-
pet shown in Figure 1 and its stack layout as implemented by ASan [29] and
SoftBound [23] in Figure 2. We can clearly see both solutions heavily modify the
stack frame layout. This, accompanied with the extra register spilling introduced
by the checking logic as well as compiler optimizations on the instrumented pro-
gram, makes reliably identifying and triaging the memory objects affected by
OOB writes within the non-instrumented program challenging.

https://github.com/utwente-scs/divak


4 Linus Hafkemeyer, Jerre Starink, Andrea Continella

tryPw realPw user

R
B
P

-0
x1
0

-0
x3
8

-0
x5
8

-0
x7
8

-0
xa
0

(R
S
P
)

Default

ASan

SoftBound

pwOK

tryPwrealPwuser

R
B
P

-0
x2
8

-0
x2
9

-0
xf
0

-0
x1
10

-0
x1
30

-0
x1
50

-0
x1
78

-0
x1
a0

-0
x1
c0

pwOK

tryPw realPw user

R
B
P

-0
x8
8

-0
xb
0

-0
xb
8

-0
xd
8

-0
xf
8

-0
xf
9

-0
x2
98

Fig. 2: Stack layouts of the function in Figure 1 (Default, ASan, and SoftBound).

Table 1: Our approach vs. existing memory sanitizers.

A
S
a
n

[2
9
]

H
W

A
sa

n
[8
]

M
e
m
ch

e
ck

[3
1
]

S
G
ch

e
ck

[3
7
]

S
o
ft
B
o
u
n
d

[2
3
]

D
e
lt
a
P
tr
s
[2
0
]

In
te
l
M

P
X

[2
6
]

B
in
A
rm

o
r
[3
3
]

P
A
ri
C
h
e
ck

[4
1
]

O
u
r
a
p
p
ro

a
ch

OOB writes detection in globals ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓
OOB writes detection on stack ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓
OOB writes detection on heap ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ×
Strong spatial guarantees* × × × × ✓ × ✓ × × ✓
Intra-object OOB write detection × × × × (✓) × ✓ ✓ × ✓
Instrumentation type CTI CTI DBI DBI CTI CTI CTI SBI CTI n.a.
No need for hardware support ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓
No mem. layout modification × × ✓ ✓ × × × × × ✓
Compatible with external code ✓ × ✓ ✓ × ✓ ✓(?) ✓(?) ✓ ✓
Detection approach TW PB TW HR PB PB PB PB OB PB
Performance overhead L L H ? L L M M L H
Memory overhead H L ? ? L L M ? L H
*: Ability to non-probabilistically detect non-continuous and underflowing OOB writes.

TW : tripwire, OB: object-based, HR: heuristics, PB: pointer-based

L: 0x-1x overhead, M : 1x-3x overhead, H : 3x+ overhead, ?: no data

Instability after Out-of-bounds write. Most tools terminate the program’s
execution after detecting one OOB write. While this behavior can often be cir-
cumvented, it might cause the program to follow invalid execution paths for the
non-instrumented program. Consider a detection approach that uses the stack to
store metadata such as bounds information. An OOB write that overwrites this
metadata may result in false positives and negatives or let the program crash.
As we wish to reliably triage OOB writes during the execution of a program,
this limitation makes most existing approaches unusable for our case.

3 Divak: Design

To overcome the challenges described in Section 2, we design Divak, a pointer-
based OOB write detection approach that characterizes spatial memory vio-
lations on the stack and in the global sections in a deterministic fashion. By
not interfering with the compiled machine code, Divak is entirely non-invasive
and does not rely on special hardware support. As such, differently from existing
work (Table 1), any insights about the effects of OOB write vulnerabilities in the
examined binary also hold when the program is not monitored by our approach.

Our approach categorizes memory objects for bounds-checking. For composite
objects like structs and arrays of structs, we consider the inner structure for



Non-invasive Characterization of OOB Write Vulnerabilities 5

the detection of intra-object OOB writes. Any other object is instead a unitary
object—a homogeneous chunk of memory for which we disregard inner structure.

We focus on detecting OOB writes occurring in the static sections .data

and .bss, as well as on the stack. We disregard heap-based OOB writes, as their
characteristics are not necessarily distorted by instrumentation-based detection
approaches—e.g., SoftBound neither allocates heap memory nor affects the al-
locator. Thus, Divak’s main novelty, i.e., its non-invasiveness, is not essential
in this scenario. Nevertheless, Divak could be extended to support heap-based
OOB writes with little engineering effort, and it is compatible with existing
tools that target the heap [13,29]. Besides, we assume that target programs are
compiled without frame pointer omission and tail call optimization. Finally, as
the majority of memory-modifying instructions that can potentially cause OOB
writes are those of the mov family, we focus our bounds-checking on this family.

3.1 Approach Overview

Our approach takes as input the source code of a program and a proof-of-concept
(PoC) input suspected of causing an OOB write and it outputs information about
the effects of all discovered OOB writes on source code-level objects. At a high
level, we perform three phases: preliminary analysis, static analysis, and dynamic
analysis. In the first phase, we instrument the compilation phase of the target
program to passively collect information about debug symbols, data structures,
and write operations. This information enables us to map properties of source
code to compiled code, which allows us to later pinpoint the specific source code-
level objects affected by OOB writes. Besides, it also allows us to handle the loss
of semantics caused by the compilation process, which is critical to characterize
OOB writes without requiring invasive modifications of the program.

In the second phase, leveraging the collected information at compile time, we
statically analyze the target binary to identify variables and parameters stored
on the stack or in the globals, determine their sizes, identify pointer-creating
instructions, and determine the destination objects of write operations. Besides,
in this phase, we determine the internal structure of composite types such as
struct, which is essential to detect intra-object OOB writes.

In the third phase, we dynamically analyze the target program by using
the findings obtained through static analysis, taint pointers, and identify write
operations that have an effect beyond the boundaries of the intended destination
objects (IDOs). Here, we map our results back to the source code domain using
the information we collect in the previous phases. Finally, because we do not alter
the state or memory layout of the program at run-time, our approach guarantees
that, by design, execution continues reliably after detecting an OOB write.

Although the goals of preliminary and static analysis could theoretically be
achieved by modifying the compiler, this would come with several drawbacks:
(1) Heavy modifications of highly complex code at multiple compilation stages
with little documentation; (2) Potentially altered binaries due to modifications,
including in production builds; (3) Incompatibility with custom or new opti-
mization passes. Therefore, we opted for the more portable hybrid approach.



6 Linus Hafkemeyer, Jerre Starink, Andrea Continella

Our design for detecting OOB writes relies on the identification and special
treatment of the following types of machine code instructions.

Independent writes. For independent writes in the machine code, the domi-
nant component from which the destination address is computed in the operand
is either given by an immediate value or a stack frame boundary register (rbp or
rsp). This has two important implications. First, independent writes can only
write to global objects or within the stack frame of the containing function. Sec-
ond, their intended destination object does not change at runtime. An example
of an independent write is the instruction mov [rsp + rax], cl, which may
access an array on the stack. Here, rsp constitutes the dominant component of
the address calculation as its value will be substantially larger than the value in
rax. Now, rsp being a stack boundary register makes this an independent write.

Dependent writes. For dependent writes, the dominant component used to
compute the destination address is given by a general-purpose register as op-
posed to a stack frame boundary register. Thus, dependent writes rely on a
previous instruction for determining the pointer used as the basis of the address
computation. This requires detaching the logic for determining the intended des-
tination object from the logic for checking the legality of the write. An example
of a dependent write is the instruction mov [rcx + rax*8], rdx, which may
access an array based at the address specified by rcx. Here, the dominant com-
ponent is given by a general-purpose register, making this a dependent write.

Pointer-creating instructions (PCIs). To facilitate bounds-checking of de-
pendent writes, it is essential to taint pointers with their intended pointee object
as early as possible by identifying the instructions at which pointers are created.

Bounds-narrowing instructions (BNIs). Children of composite objects are
often accessed by offsetting a pointer to the object. To detect intra-object OOB
writes, it is therefore essential to adjust a pointer’s bounds information as soon
as it starts pointing to a child object. While PCIs create a new pointer, BNIs
transform an existing pointer to a pointer referencing the original object’s child.

Algorithm 1 shows a high-level overview of our approach’s dynamic analysis
stage, and is intended to be applied to every instruction of the program upon
its execution. Operations related to the core challenges solved by our design are
marked in orange. For a dependent write, we identify the intended destination
object from the destination pointer’s taint. Using the bounds-narrowing informa-
tion associated with the dependent write, we check if a write is fully in-bounds.
For independent writes, the intended destination object is fixed at compile time,
thus we check if the write is in bounds from the knowledge of the written bytes
and the exact instruction. For PCIs and BNIs, we taint newly created pointers
and re-taint existing ones to narrow their bounds according to the new pointee.

3.2 Memory Layout Extraction

Maintaining information on which objects occupy which memory regions during
dynamic analysis is essential for detecting OOB writes and mapping the affected
regions to their corresponding objects. To do so, we leverage DWARF debug
data during static analysis. While the locations of global objects are generally



Non-invasive Characterization of OOB Write Vulnerabilities 7

Algorithm 1 High-level pseudocode description of our dynamic analysis stage.
1: if inst is write then
2: dstAddr ← getWriteDstAddr(inst)
3: nBytes← getWriteBytesNum(inst)
4: if inst is dependent write then
5: taint← getPointerTaint(dstAddr)
6: ido← getObjectFromTaint(taint)
7: if inst is BNI then
8: bniTarget← getBoundsNarrowingTarget(inst)
9: ido← narrowObject(ido, bniTarget)
10: else
11: ido← getObjectFromIndependentWrite(inst)
12: if [dstAddr, nBytes - 1] is not in [ido.start, ido.end] then
13: reportOOBw()
14: else if inst is PCI or BNI then
15: bniTarget← getBoundsNarrowingTarget(inst)
16: ptr ← getResultingPointer(inst)
17: ido← getPointeeObject(ptr, bniTarget)
18: taintPointer(ptr, ido)

specified by a fixed address, stack objects are referenced as offsets from a stack
frame register. We track the program’s call stack at runtime by determining the
start addresses of functions and monitoring for call and ret instructions.

Compiler optimizations, which typically decrease the number of objects stored
on the stack, frequently reduce the lifetime of objects in memory to one or more
instruction address intervals, using the space for different purposes during the
remaining part of the function. As DWARF provides detailed information on the
lifetimes of objects, we leverage this to record the location of objects not only
in a spatial but also in a temporal dimension.

3.3 Intended Destination Objects Identification

For bounds-checking independent writes, we rely on the fact that their intended
destination object is fixed at compile time. As high-level semantics are lost dur-
ing compilation, we implement bounds-checking as a final LLVM IR analysis
pass, before the translation into machine code. By leveraging the IR, we avoid
directly matching independent writes to memory objects and instead take a de-
tour as follows: (1) Identify independent writes in the IR and determine their
destination variable; (2) Match each independent write in ASM to its corre-
sponding independent write in the IR; (3) Match each destination IR variable
to its corresponding object in memory.

Determining independent IR writes and destination variables. For iden-
tifying independent writes in the IR during the preliminary analysis, we focus
on three typical representations of mov-family instructions in the IR: the store
instruction, and the llvm.memcpy and llvm.memset intrinsics. To test whether
an IR write is independent and to find the variable it modifies, we trace back its
def-use chain. Starting from the write’s operand that specifies the destination,
we find the definition that created this pointer and repeat this procedure until
there are no more unambiguous predecessors. If we end up at a local or global
variable definition, we conclude the write is independent. If we encounter a BNI
in the def-use chain, we keep track of the child to which the pointer is modified.



8 Linus Hafkemeyer, Jerre Starink, Andrea Continella

Matching independent writes from ASM to IR. To find the corresponding
independent IR write of each independent ASM write during static analysis, we
rely on line number debug information that maps instructions to the source
file, line, and column at which the corresponding source code is located. While
the conveyed location information is irrelevant to us, we can use its distinctive
features to map write instructions in the machine code to the IR domain. In
practice, however, this mapping is rarely bijective. This is caused by the inherent
differences between AMD64 assembly and the IR and our disregard for certain
memory-modifying instructions in ASM and the IR. As such, this constitutes a
best-effort approach that occasionally fails to match an independent write.

Matching IR variables to memory objects. Determining the destination
object for independent IR writes is arguably the simplest step as we can match
on the variable names during the preliminary analysis. If bounds-narrowing
traversable definitions are encountered in the write’s def-use chain, and the in-
tended destination object is thus a child of a composite object, we leverage the
information obtained while handling the BNI to determine this child.

3.4 Pointer-Creating Instructions Identification

According to our experience, two types of instructions are responsible for virtu-
ally all pointer creations in machine code generated by Clang. First, instructions
such as lea rax, [rbp + 8*rbx - 72] combine several arithmetic operations
and registers to compute an address. This causes the lea instruction to be used
for almost all cases in which a pointer relative to a stack frame boundary register
is created, as it occurs when creating a pointer to an automatic variable. Sec-
ond, mov instructions with a source address into a static section (e.g., mov edi,

0x409678) are typically emitted when a pointer to a static variable is created.

3.5 Bounds-Narrowing Instructions Detection

Within compiled code, identifying the locations where bounds-narrowing is per-
formed is challenging. For this, we again leverage the LLVM IR, where pointer
manipulation is performed with getelementptr (GEP) instructions. For each
of them, we test during the preliminary analysis whether the instruction trans-
forms a composite object pointer into one of its (recursive) children. If so, we
determine the narrowed child from the instruction. We hereafter refer to this as
the bounds-narrowing target (BNT).

In compiled code, three types of instructions are, according to our experience,
potential candidates for BNIs that are relevant to our goal of bounds-checking
writes. First, add instructions, which are frequently used for offsetting pointers to
struct fields and can be bounds-narrowing if the incremented number is stored in
a general-purpose register capable of holding a pointer. Second, lea instructions,
which we also previously identified as pointer-creating. As the creation of a
pointer to a composite object’s child requires bounds-narrowing to be performed
immediately upon pointer creation, their consideration is essential. Third, the
mov family, which can act as BNIs in three ways: (1) If it is a PCI to the child



Non-invasive Characterization of OOB Write Vulnerabilities 9

of a composite static variable; (2) If a pointer to the beginning of the first child
of a composite object is created from a pointer to the composite object; (3) If it
writes to the child of a composite object, the address to which is only calculated
within the destination operand. Here, the narrowed pointer is used immediately
for writing and discarded afterwards. To match BNIs in the IR to their compiled
counterparts, we again leverage line number debug information.

3.6 Intended Pointee Objects Determination

Determining a pointer’s intended pointee object (IPO) during dynamic anal-
ysis is essential for bounds-checking dependent writes. We do so by leveraging
memory layout information from debug metadata and bounds-narrowing targets
identified during the IR analysis. The need of determining an IPO arises at four
different types of instructions in our design: bounds-narrowing dependent writes,
bounds-narrowing PCIs, ordinary BNIs, and ordinary PCIs. For each type, the
required actions, depending on if the pointer is tainted, are shown in Table 2.

4 Implementation

We implemented Divak in 2,700 SLOC of C++ and 1,900 SLOC of Python code
on top of the S2E in-vivo symbolic execution platform [7] and an LLVM pass
(Figure 3). The choice of S2E as an analysis platform was mainly motivated by its
facilitation of quick prototyping in this case, minimizing the development effort
for the non-core functionality of Divak. Furthermore, its symbolic execution
capabilities provide us with the ability to perform taint analysis with effectively
infinitely many taint colors by maintaining a mapping from symbolic values’
internal identifiers to pointee objects. As a negative side-effect, S2E introduces
significant performance overhead, which indicates that it may not be the ideal
choice in real-world applications. We discuss this aspect in Section 6.

Preliminary analysis.Divak’s first stage concerns the compilation using Clang
13.0.1 and our analysis of the LLVM IR. By doing so, we get the required analysis
results without modifying the program, thereby achieving non-invasiveness.

To reduce complexity, we disregard two types of BNIs: (1) Dynamic BNIs
are those BNIs for which the (recursive) child to which a pointer is created is
only determined at run time. While omitting them can cause intra-object OOB
writes to remain undetected, they typically only occur when arrays of structs

Table 2: Approach for determining the intended pointee object of a pointer in
different scenarios. DW=Dependent Write.

Pointer is tainted Pointer is not tainted
BNI+
DW

Narrow pointer bounds according to target
and use immediately to check write.

Previously missed pointer tainting. Cannot
identify IPO, hence cannot narrow bounds.

BNI+
PCI

Not actually a PCI, treat like BNI. Determine pointee from BNT and memory
layout, taint pointer.

BNI Narrow pointer bounds according to target
and re-taint.

Previously missed pointer tainting. Treat like
BNI + PCI.

PCI Is a BNI but was not matched. Cannot nar-
row bounds.

Determine pointee from memory layout, taint
pointer.



10 Linus Hafkemeyer, Jerre Starink, Andrea Continella

ELF Analysis
Compilation (LLVM)

Frontend (Clang) AMD64 Backend

Custom Analysis Pass
- Independent write discovery

- Bounds narrowing site
discovery

LLVM IR

Source
Code PoC Input

Dynamic Analysis (S2E)

IR
Analysis
Results

ELF
Binary

Aggregated
Analysis
Results

Extracted
Capabilities

 = Our Contribution

Optimization Passes

LLVM IR LLVM IR

DWARF Debug Information
Analysis

- Type extraction
- Variable extraction
- Function analysis

Binary Analysis
- Pointer-creation site discovery

- Write discovery

Memory Layout
Maintenance

Independent write
bounds checking

Bounds narrowing

Pointer tainting

Dependent write
bounds checking

Matching
- Independent IR to ASM writes
- IR variables to memory objects
- IR bounds-narrowing sites to

instructions

Fig. 3: Schematic diagram of Divak, the pipeline implementing our design.

are indexed. (2) Bounds-shifting instructions serve to calculate the pointer to a
sibling element in the same array, thus violating our assumption that a pointer’s
bounds can be narrowed by a BNI but can never be widened again. Omitting
them can potentially cause legitimate dependent writes to be reported as OOB.

To alleviate poor line number debug information arising from optimizations,
we attach random synthetic line numbers to independent IR writes and BNIs
that are missing line numbers in the LLVM IR.

Static analysis. The second stage in our pipeline analyzes the compiled binary
and combines the obtained results with the high-level semantic information ex-
tracted from the LLVM IR. We identify all variables and formal parameters
stored on the stack or in the globals from the DWARF debug information to
facilitate memory layout tracking, recording their location, lifetime, and type.
We consider the smallest interval encompassing all DWARF-specified lifetime
intervals as the object’s lifetime. Besides, we determine the sizes of all specified
types, as well as the inner structure of composite types. To address the chal-
lenges arising from representing memory lifetimes as a single interval, we merge
objects with identical spatial dimensions whose lifetimes overlap.

To find pointer-creating instructions and independent ASM writes, we iden-
tify the instructions satisfying our definitions (Section 3). We then obtain their
debug information and find their corresponding independent IR writes with iden-
tical files, lines, and column information. By finding the DWARF-specified ob-
ject corresponding to each independent IR write’s destination object through
name-based matching, we identify the bounds of each matched independent ASM
write’s destination object and ease bounds-checking during dynamic analysis.

Dynamic analysis.Divak runs and monitors the target program implementing
Algorithm 1 in three plugins for S2E [7]. We distinguish dependent and inde-
pendent writes based on their destination address. If it is symbolic, the write
is dependent, and we obtain the intended destination object from the pointer’s
taint to test if all written bytes are within the object’s interval. If it is concrete
and we statically identified an independent write at this location, we check if all
written bytes are part of the independent write’s intended destination object.

We register callbacks that are invoked when executing instructions identified
as a PCI or BNI during static analysis. When a PCI or BNI is executed, it is
handled as described in Section 3. We determine the new intended pointee object
based on the taint of the pointer, the instruction type, the bounds-narrowing in-



Non-invasive Characterization of OOB Write Vulnerabilities 11

Table 3: Detection performance of Divak for dependent OOB writes in RIPE
testbed at different optimization levels.

m
e
m
c
p
y

st
rc
p
y

st
rn

c
p
y

sp
ri
n
tf

sn
p
ri
n
tf

st
rc
a
t

st
rn

c
a
t

ss
c
a
n
f

fs
c
a
n
f

h
o
m
e
b
re
w

0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z

stack

ret ∗ ∗
baseptr ∗ ∗
funcptr (var) ∗ ∗
funcptr (param) ∗ ∗
structfuncptr ∗ ∗
longjmp (var) ∗ ∗
longjmp (param) ∗ ∗

bss
funcptr ∗ ∗
structfuncptr ∗ ∗
longjmp ∗ ∗

data
funcptr ∗ ∗
structfuncptr ∗ ∗
longjmp ∗ ∗

=detected, =not detected, =not possible, ∗=manually validated results

formation, as well as the type of the old intended pointee object. We then taint
the pointer accordingly. We refrain from tainting pointers that are not stored in
a register but immediately written to memory. To further improve performance,
we intercept function calls to several standard library functions such as memcpy
and perform premature bounds-checking if the destination pointer is tainted.
Afterward, we untaint all function arguments to allow for faster emulated exe-
cution of the library function. Finally, we group OOB writes occurring at the
same instruction and identical call stack, merge the overwritten intervals, iden-
tify affected source code-level objects, and report our results in a JSON format.

5 Evaluation

We evaluate Divak’s performance in terms of OOB write detection efficacy both
under laboratory conditions and in real-world programs, as well as performance
overhead, and we compare it with ASan and SoftBound.

5.1 Dependent OOB Writes Detection

To measure Divak’s ability to detect dependent OOB writes, we use a subset of
a 64-bit version [28] of the RIPE testbed [39]—designed to test defenses against
buffer overflow exploits. By varying the location, the type of overwritten pointer,
and the function causing the OOB write, we obtain 122 test cases. By the design
of RIPE, some parameter combinations are not possible. We conduct a manual
best-effort validation of the affected memory objects identified by Divak by
comparing our results with the DWARF memory layout, the memory layout to
be expected from the source code, and by inspecting the disassembled code.

Results. Divak achieves a detection rate of 89%, as shown in Table 3. Failing
test cases are limited to intra-object OOB writes under optimizations, with in-
complete line number debug information for the corresponding BNI as the root
cause. Manually validating Divak’s output yields flawless results for OOB writes



12 Linus Hafkemeyer, Jerre Starink, Andrea Continella

Table 4: Detection performance of ASan for dependent OOB writes in RIPE
testbed at several optimization levels.

m
e
m
c
p
y

st
rc
p
y

st
rn

c
p
y

sp
ri
n
tf

sn
p
ri
n
tf

st
rc
a
t

st
rn

c
a
t

ss
c
a
n
f

fs
c
a
n
f

h
o
m
e
b
re
w

0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z

stack

ret
baseptr
funcptr (var)
funcptr (param)
structfuncptr
longjmp (var)
longjmp (param)

bss
funcptr
structfuncptr
longjmp

data
funcptr
structfuncptr
longjmp

=detected, =not detected, =not possible

in the global sections. On the stack, overwritten ranges are correctly identified.
However, with optimizations enabled, the high-level counterparts of roughly 30%
of the affected stack objects are not identified due to incomplete DWARF data.

ASan achieves a detection rate of 70%, as shown in Table 4. From our results,
it is clear that ASan’s primary drawback lies in the inability to detect intra-object
OOB writes. While they were detected for sscanf and fscanf, manual analysis
suggests this is caused by a bug in the testbed. SoftBound detects 34% of OOB
writes. Similarly, SoftBound is limited by the inability to detect intra-object
OOB writes and its reliance on six unimplemented wrapper functions.

5.2 Independent OOB Writes Detection

We evaluate Divak’s independent OOB write detection performance using a
testbed we designed for this purpose and release along with our code. The testbed
comprises four parameter dimensions with a total of 44 test cases and largely
reproduces the vulnerability scenarios of RIPE using independent writes.

Results. Divak successfully detects the OOB write in 95% of the test cases (Ta-
ble 5). In 13% of the configurations, however, a false positive is detected. Detec-
tion succeeds for all inter-object OOB writes and only fails for some intra-object
OOB writes on the stack and in the .data section. In these cases, the fault occurs
in the IR analysis, where tracing the write’s declaration chain terminates pre-
maturely. Specifically, the source pointer of a bounds-narrowing getelementptr

instruction is cast from the original structure, consisting of an array of 255 bytes
and a pointer, to an array of 256 bytes. This causes the analysis to conclude that
this is not a relevant BNI, as the subject is not an object we consider composite.

Investigating the series of false positives raised by Divak reveals a violation
of our assumption that pointers point to their intended destination object upon
creation. When compiled with -O1, a pointer to a stack object is created using
a lea but only offset to its intended pointee object by an add that immediately



Non-invasive Characterization of OOB Write Vulnerabilities 13

Table 5: Detection of independent OOB writes in our testbed. OOB writes occur
in isolation (iso) or in a function containing further unrelated writes (svd).

Divak ASan SoftBound
iso svd iso svd iso svd

0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z 0 1 3 z

c
o
n
ti
n
u
o
u
s

stack

ret ∗ ∗
baseptr ∗
funcptr
structfuncptr ∗
longjmp ∗

data
funcptr ∗ ∗
structfuncptr ∗
longjmp ∗

bss
funcptr
structfuncptr
longjmp ∗

ju
m
p
in
g

stack

ret
baseptr ∗
funcptr ∗ ∗
structfuncptr ∗
longjmp ∗

data
funcptr
structfuncptr ∗
longjmp ∗

bss
funcptr ∗ ∗
structfuncptr ∗ ∗
longjmp ∗

=detected, =not detected + fp, =detected + fp, =not detected, ∗=manually validated results

follows. Thus, the pointer is incorrectly tainted. As the integration of the add

into the lea would have required fewer bytes and would presumably execute
faster, the compiler’s reason for splitting them remains unclear.

Manually validating the overview of affected objects generated by our ap-
proach yields similar results as the previous experiment. While the results ap-
pear correct and complete for -O0, several stack objects are missing from the
summary when optimizations are employed. A closer investigation again reveals
incomplete debug information generated by the compiler to be at fault.

ASan detects the OOB write in 36% of all tests. Most failures can be at-
tributed to the inability to detect intra-object OOB writes, as well as the reliance
on red zones, preventing it from detecting jumping OOB writes. SoftBound suc-
cessfully detects the OOB write in 73% of the test cases. All inter-object OOB
writes are found, while intra-object OOB writes remain undetected.

5.3 Testing Real-world Programs

We evaluate Divak on three real-world vulnerabilities found in open source soft-
ware. Besides, we run each program under test with a benign input to assess the
false positives of Divak. To evaluate the performance of our static analysis, we
assess the independent write and BNI matching performance. For the dynamic
analysis, we collect statistics of three categories: (1) The number of dependent,
independent, and unchecked writes; (2) Statistics about successful, ignored, and
failed BNIs; (3) The successful pointee inferences from memory.

libxml (CVE-2017-9047). This vulnerability in the libxml library is a stack-
based buffer overflow [4]. While attributed to the same root cause, OOB writes



14 Linus Hafkemeyer, Jerre Starink, Andrea Continella

gzip pnm2png xmllint
Program and optimization level

0%

5%

10%

15%

20%

25%

30%

Sh
ar

e 
of

 in
de

pe
nd

en
t w

rit
es

-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz

Multiple IDO candidates
No IR instruction candidates

gzip pnm2png xmllint
Program and optimization level

0%

20%

40%

60%

80%

100%

Sh
ar

e 
of

 b
ou

nd
s-

na
rro

w
in

g 
in

st
ru

ct
io

ns

-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz-O0 -O0 -O0-O1 -O1 -O1-O3 -O3 -O3-Oz -Oz -Oz

More multiple candidates in ASM
No candidates in ASM
IR instruction has multiple GEPs
Bounds-shifting instruction
Dynamic BNI

Fig. 4: Causes for unmatched
independent writes.

Fig. 5: Causes for
unmatched BNIs.

Table 6: Detection performance for three real-world vulnerabilities.
libxml

(CVE-2017-9047)
libpng

(CVE-2018-14550)
gzip

(CVE-2001-1228)
0 1 3 z 0 1 3 z 0 1 3 z

Divak
ASan
SoftBound

=detected, =not detected + fp, =partly detected, =not possible

occur at two different instructions. As shown in Table 6, Divak successfully
detects both OOB writes at all four optimization levels and does not yield any
false positives for the PoC or the benign input. Furthermore, due to its non-
invasiveness, Divak is the only tool to detect all occurring OOB writes. As
presented in Figure 4, independent write matching achieves a 0% failure rate
without optimizations, which increases to 25% at -O3 due to overlapping memory
objects and missing line number debug information. BNI matching (Figure 5)
also performs best without optimizations but has a higher failure rate, mostly
due to a lack of line number debug information.

For this vulnerability, most checked writes are dependent. The share of
checked writes ranges from 100% down to 31%, the latter being caused by one or
more independent writes remaining unmatched. Most encountered BNIs concern
pointers to unmonitored sections, mainly the heap. Last, determining a pointer’s
intended pointee object ranges from a 100% success rate at -O0 to a 95% success
rate at -O3 for the PoC input. Most failures come from incomplete memory lay-
out information caused by optimizations. Our assumption of memory object’s
lifetimes being representable by a single interval is responsible for at most 1% of
failed pointee inferences. Manual validation of the affected objects identified by
Divak yields that the results are largely correct and complete, except for a few
objects that are not recorded in DWARF and thus not identified as affected.

While the OOB write affects many objects and stack frames at -O0 and -O1,
rearrangement of stack objects at -O3 and -Oz causes it to only affect a single
5000-byte buffer. While the vulnerability can easily be used to divert control
flow at -O0 and -O1 if no countermeasures are deployed, this is likely impossible
at -O3 and -Oz if the PoC cannot be modified to affect a larger range.



Non-invasive Characterization of OOB Write Vulnerabilities 15

ASan detects the first OOB write at each optimization level. The second
OOB write, however, is not detected, likely due to the overwritten byte not
being located in a red zone. Instrumenting with SoftBound at -O0 causes the
compiler to crash. With employed optimizations, SoftBound reports an OOB
write early during execution and crashes with a segmentation fault.

libpng (CVE-2018-14550) This stack-based buffer overflow is located in the
pnm2png tool, part of the libpng library [21]. While attributed to the same
root cause, OOB writes occur at two different instructions. As shown in Ta-
ble 6, Divak successfully detects both OOB writes in pnm2png without raising
false positives at any tested optimization level. For the benign input, however,
false positives occur when optimizations are enabled. Manual validation of the
affected objects identified by Divak reveals that the results are largely correct
at all optimization levels, missing only an 8-byte object not present in DWARF
when employing optimizations. Running an optimized version of pnm2png with
a benign input using Divak causes multiple false positives in one function to
be reported. Manually investigating the reason for this shows that the compiler
optimized the zero-initialization of a struct by using a pointer to one of its fields
for zeroing both the field and its sibling fields. ASan and SoftBound detect OOB
writes at both locations for all tested optimization levels.

gzip (CVE-2001-1228) This is a .bss buffer overflow in the gzip utility. As
shown in Table 6, Divak successfully detects the OOB write at all four opti-
mization levels and yields no false positives for the PoC input. For the benign
input, multiple false positives are reported. While independent write matching
performs reasonably well (Figure 4), BNI matching works poorly (Figure 5).
Only 10% are matched at -O0 and less than 1% are matched at -O3. This is
primarily caused by dynamic BNIs, which comprise between 70% and 85% of
all BNIs. Furthermore, a non-negligible number of bounds-shifting instructions
is found at -O3. Manual validation of Divak’s output shows that all affected
objects are correctly identified at all optimization levels. This demonstrates that
the issues of an incomplete memory layout extraction are limited to the stack.

When using a benign input, three false positives are reported at -O0 and -O1,
and one is reported at -O3 and -Oz. All of these are caused by our disregard for
bounds-shifting instructions. In each case, a struct pointer passed to a function
is used to access adjacent structs in the same array, causing Divak to incorrectly
report OOB writes. Both ASan and SoftBound detect the vulnerability.

5.4 Performance Overhead

We evaluate Divak’s overhead on the three real-world programs when feeding
them benign inputs. We execute the programs using ASan, SoftBound, Divak,
and natively under different optimization levels. We run each configuration ten
times and consider the means. All measurements are performed on an Intel Xeon
E3-1231v3 running Ubuntu 20.04. Table 7 shows the mean runtime overheads.
Since our measurements indicate no substantial differences between optimization
levels, we only present the results for -O1. As expected, Divak currently incurs
a massive performance overhead (8,000 – 44,000×). ASan and SoftBound, on



16 Linus Hafkemeyer, Jerre Starink, Andrea Continella

Table 7: Performance overhead for each program at -O1.
Program Divak ASan SoftBound
xmllint 8113× 5.4× -
pnm2png 8592× 4.4× 3.9×
gzip 44097× 4.8× 1.5×

the other hand, incur at most a sixfold overhead. While Divak’s performance
overhead might seem to make it unusable in practice, it is important to note
that little regard was given to performance during the implementation of this
prototype, resulting in design decisions with a highly detrimental impact on
performance. The most severe decision is the usage of S2E, which introduces
a considerable overhead by executing most of the program’s code in symbolic
mode. We discuss a possible approach for reducing the overhead in Section 6.

6 Discussion

Our experiments show that Divak is well capable of characterizing OOB writes.
While ASan and SoftBound cannot detect intra-object OOB writes, Divak’s
logic for detecting them is not perfect. Besides the false positives raised for the
real-world vulnerabilities, intra-object OOB writes are the only test cases in
our testbed experiments for which detection fails. However, the former can be
reduced by introducing a small number of heuristics, for example disregarding
OOB writes relative to pointers created in the current function scope and not
modified by pointer arithmetic. Despite these limitations, our experiments show
that Divak’s capabilities outperform ASan and SoftBound, with a false positive
in the dependent write testbed being the only apparent downside.

Divak’s main drawback is the excessive performance overhead. A promising
approach to combat this is to replace the full-system emulation of S2E with
dynamic binary instrumentation, e.g., Intel Pin. This would allow implementing
pointer tracking by performing taint analysis through libdft [17], eliminating the
overhead introduced by the use of symbolic variables. Although Pin would mod-
ify the program’s memory layout by allocating space for its own metadata, the
arrangement of objects within the program’s sections would remain untouched.
Thus, our goal of non-invasiveness would in practical terms be achieved. With
the authors of libdft having measured an overhead of at most 6× for typical
programs, our tool would experience a substantial decrease in overhead, even
with a very conservative estimate of additional 50× overhead due to the amount
of tainted data and our analysis logic. While Divak’s need for a large number of
taint colors would increase the load on libdft, limiting the set of colors by reusing
them at the cost of a low chance for false negatives would be conceivable.

Thus, we conclude that, for use cases where only a low number of executions
are necessary, e.g., bug triaging, a high recall is desirable, and false positives
are tolerable, Divak is superior to instrumentation-based tools like ASan and
SoftBound. This is especially true if intra-object OOB writes are to be detected.
In addition to these benefits, it is important to keep in mind that our work’s pri-
mary goal was to design a non-invasive OOB write detection approach that can



Non-invasive Characterization of OOB Write Vulnerabilities 17

be used to faithfully characterize the real effects of vulnerabilities as they exist
in programs deployed in production environments: Divak is the only approach
that guarantees faithful results in terms of affected memory objects.

Limitations. Divak assumes that, once the bounds attached to a pointer are
narrowed to a composite child, any derived pointer requires identical or nar-
rower bounds. This does not hold for bounds-shifting instructions, causing false
positives. Nevertheless, this can be mitigated by handling such instructions akin
to BNIs. A drawback of Divak’s reliance on DWARF debug information is a
dependence on its correctness and completeness. While we did not encounter
cases of incorrect information, we observed incomplete location descriptions un-
der optimizations caused by compiler bugs. This occasionally causes Divak to
fail tainting pointers or deliver incomplete memory layout results. However, as
the analysis of such bugs gained traction in the past years [2,10], enabling them
to be fixed, their impact on Divak’s results can be expected to decrease.

Another current limitation is the assumption that a single interval can de-
scribe the lifetime of any object, as outlined in Section 4. This occasionally causes
overlapping objects, which we try to combat by merging identically-sized objects.
Nevertheless, this often leaves some overlapping objects in heavily inlined code,
for which we observed up to 3% of objects to overlap with one another.

Lastly, we assume the program under test to be built without frame pointer
omission and tail call optimizations, arguably violatingDivak’s non-invasiveness.
Furthermore, we currently do not support position-independent executables.
Both issues, however, are merely limitations of our current prototype that do not
invalidate our results and can be alleviated with limited implementation effort.

Future work. A subject for future work is the extension of our design with
omitted features, e.g., dynamic BNIs and bounds-shifting instructions. More-
over, re-implementing Divak to decrease its performance overhead is desirable
to make it scalable as a part of other pipelines. Although Divak is meant to
triage identified vulnerabilities and the discovery of new vulnerabilities is out of
scope, a future research direction is the combination of Divak with approaches
for finding alternative vulnerable paths, e.g., directed fuzzing, to create a more
complete profile of the vulnerability capabilities. As the issue of invasiveness pre-
dominantly concerns the stack and globals, we do not consider heap-based OOB
writes. However, Divak can be extended to intercept calls to memory allocators.
Alternatively, one may use ASan’s heap-based OOB analysis with disabled in-
strumentation of stack and global sections to largely maintain non-invasiveness.

7 Related Work

Several approaches have been proposed for detecting spatial memory bugs. Most
of them rely on compile-time instrumentation (CTI) to insert their checking logic
into the program [23,29,8,20], allowing for low overhead at the cost of highly
invasive program modifications. Binary instrumentation-based approaches suffer
from the lack of high-level semantic information, preventing them from providing
strong spatial guarantees for the detection of certain OOB write types [33,31,37].
Similarly, binary-level pointer analysis [18] is often course-grained and cannot
guarantee sufficient precision to track OOB writes that have marginal effects.



18 Linus Hafkemeyer, Jerre Starink, Andrea Continella

Identity-based approaches check whether the accessed memory locations are
part of the expected object according to high-level program semantics. For ac-
cesses relative to pointers, this requires a sophisticated approach to maintain
a mapping between pointers and intended pointee objects. Pointer-based ap-
proaches like Divak augment pointers with additional metadata, by embedding
bounds information into pointers at pointer-creation sites [23,26,20,30,8]. Object-
based approaches associate metadata only with memory objects, not with point-
ers [41], and test whether pointer arithmetic instructions have the same pointee
before and after the operation. However, such approaches generally cannot detect
intra-object OOB writes as composite objects overlap with their children.

Tripwire-based approaches [29,31] insert red zones around objects to detect
OOB accesses. The main example of such approaches is ASan [29]. Its low-
performance overhead makes it ideal for use cases such as fuzzing. A hardware-
assisted variation for ARM64 [8] further decreases the memory overhead, while a
kernel variation, KASAN [36] facilitates kernel fuzzing. One shortcoming is that
non-contiguous OOB writes jumping over the red zone remain undetected. Fur-
thermore, the insertion of new memory objects makes them invasive by design.

SoftBound [23] is a pointer-based sanitizer using CTI that provides relatively
strong spatial detection guarantees but is heavily invasive and relies on wrappers
for external function calls. While it promises to be able to detect intra-object
OOB writes, we discovered this is not implemented in the publicly available tool.

Memcheck [31] and SGcheck [37] are tools for the Valgrind platform [24]
and use a tripwire and heuristic-based approach, leveraging dynamic binary
instrumentation without high-level semantic information. Orthogonally to our
approach, QASan [13] detects heap memory violations. Intel MPX [26] is an
AMD64 ISA extension that leverages CTI to get strong spatial guarantees. How-
ever, its deprecation caused its support to be removed from most compilers.

Besides in sanitizers, OOB write detection has application scenarios in larger
pipelines. KOOBE [6] leverages KASAN and a pointer-based approach, similar to
Divak, for heap-based kernel exploitation. BORG [25] discovers buffer overreads
by employing a heuristic approach for recovering memory layout. Revery [38]
employs a software-based memory tagging approach for heap-based AEG.

Finally, other related approaches identify memory errors at the LLVM IR
level [35,34], however, they focus on different classes of bugs, such as memory
leaks and use-after-free, which intrinsically require a less intrusive analysis.

8 Conclusion

We proposed Divak, a tool to detect OOB writes in a non-invasive manner and
to distill their capabilities by identifying the affected source code-level objects
stored in memory. Using two benchmarks and three real-world vulnerabilities,
we showed that Divak can keep up with, and in some cases even exceed, the
detection performance of current instrumentation-based OOB write detection
approaches, yielding negligible false positives, at the cost of higher overhead.



Non-invasive Characterization of OOB Write Vulnerabilities 19

References

1. Anderson, J.P.: Computer Security Technology Planning Study. Tech. rep., U.S.
Air Force Electronic Systems Division (1972)

2. Assaiante, C., D’Elia, D.C., Di Luna, G.A., Querzoni, L.: Where Did My Variable
Go? Poking Holes in Incomplete Debug Information. In: Procs. of the ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2023)

3. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: automatic exploit gen-
eration. In: Procs. of the Network and Distributed System Security Symposium
(NDSS) (2011)

4. Böhme, M.: oss-security - Invalid writes and reads in libxml2 (2017)
5. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on Binary

Code. In: Procs. of the IEEE Symposium on Security and Privacy (S&P) (2012)
6. Chen, W., Zou, X., Li, G., Qian, Z.: KOOBE: Towards facilitating exploit gen-

eration of kernel out-of-bounds write vulnerabilities. In: Procs. of the USENIX
Security Symposium (2020)

7. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A Platform for In-Vivo Multi-
Path Analysis of Software Systems. In: Procs. of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS) (2011)

8. Clang: Hardware-Assisted AddressSanitizer Design Documentation (2022)
9. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wa-

gle, P., Zhang, Q.: StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In: Procs. of the USENIX Security Symposium (1998)

10. Di Luna, G.A., Italiano, D., Massarelli, L., Österlund, S., Giuffrida, C., Querzoni,
L.: Who’s Debugging the Debuggers? Exposing Debug Information Bugs in Opti-
mized Binaries. In: Procs. of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (2021)

11. Ding, Z.Y., Goues, C.L.: An Empirical Study of OSS-Fuzz Bugs (2021)
12. Donovan, A.A., Kernighan, B.W.: The Go Programming Language. Addison-

Wesley Professional (2015)
13. Fioraldi, A., D’Elia, D.C., Querzoni, L.: Fuzzing binaries for memory safety errors

with qasan. In: Procs. of the IEEE Secure Development Conference (2020)
14. Heelan, S.: Automatic Generation of Control Flow Hijacking Exploits for Software

Vulnerabilities. Master’s thesis, University of Oxford (2009)
15. Huang, S.K., Huang, M.H., Huang, P.Y., Lai, C.W., Lu, H.L., Leong, W.M.:

CRAX: Software Crash Analysis for Automatic Exploit Generation by Modeling
Attacks as Symbolic Continuations. In: Procs. of the IEEE International Confer-
ence on Software Security and Reliability (SERE) (2012)

16. ISO Central Secretary: Programming languages — C. Standard ISO/IEC
9899:2011, International Organization for Standardization, Geneva, CH (2011)

17. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: Libdft: Practical Dy-
namic Data Flow Tracking for Commodity Systems. In: Procs. of the 8th ACM
Conference on Virtual Execution Environments (2012)

18. Kim, S.H., Zeng, D., Sun, C., Tan, G.: Binpointer: towards precise, sound, and scal-
able binary-level pointer analysis. In: Procs. of the ACM International Conference
on Compiler Construction (2022)

19. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press (2018)
20. Kroes, T., Koning, K., Kouwe, E.v.d., Bos, H., Giuffrida, C.: Delta Pointers: Buffer

Overflow Checks Without the Checks. In: Procs. of the EuroSys Conference (2018)



20 Linus Hafkemeyer, Jerre Starink, Andrea Continella

21. Luo, Z.: Stack-buffer-overflow in pnm2png in function get token (2018)
22. MITRE Corporation: CWE Top 25 Most Dangerous Software Weaknesses (2021)
23. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: Highly Com-

patible and Complete Spatial Memory Safety for C. In: Procs. of the ACM Con-
ference on Programming Language Design and Implementation (PLDI) (2009)

24. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: Procs. of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI) (2007)

25. Neugschwandtner, M., Comparetti, P.M., Haller, I., Bos, H.: The BORG:
Nanoprobing Binaries for Buffer Overreads. In: Procs. of the ACM Conference
on Data and Application Security and Privacy (CODASPY) (2015)

26. Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., Fetzer, C.: Intel MPX Ex-
plained: An Empirical Study of Intel MPX and Software-based Bounds Checking
Approaches (2017)

27. PaX Team: Address Space Layout Randomization (2001)
28. Rosier, H.: ripe64 (2019), https://github.com/hrosier/ripe64
29. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: A Fast

Address Sanity Checker. In: Procs. of the USENIX Annual Technical Conference
(2012)

30. Serebryany, K., Stepanov, E., Shlyapnikov, A., Tsyrklevich, V., Vyukov, D.: Mem-
ory Tagging and how it improves C/C++ memory safety (2018)

31. Seward, J., Nethercote, N.: Using Valgrind to Detect Undefined Value Errors with
Bit-Precision. In: Procs. of the USENIX Annual Technical Conference (2005)

32. Shoshitaishvili, Y., Weissbacher, M., Dresel, L., Salls, C., Wang, R., Kruegel, C.,
Vigna, G.: Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning Systems
with Human Assistance. In: Procs. of the ACM SIGSAC Conference on Computer
and Communications Security (CCS) (2017)

33. Slowinska, A., Stancescu, T., Bos, H.: Body Armor for Binaries: Preventing Buffer
Overflows Without Recompilation. In: Procs. of the USENIX Annual Technical
Conference (2012)

34. Sui, Y., Xue, J.: Svf: interprocedural static value-flow analysis in llvm. In: Procs.
of the ACM International Conference on Compiler Construction (2016)

35. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-
flow analysis. In: Procs. of the International Symposium on Software Testing and
Analysis (2012)

36. The kernel development community: The Kernel Address Sanitizer (KASAN) —
The Linux Kernel documentation (2021)

37. Valgrind Developers: SGCheck: An Experimental Stack and Global Array Overrun
Detector (2012), https://valgrind.org/docs/manual/sg-manual.html

38. Wang, Y., Zhang, C., Xiang, X., Zhao, Z., Li, W., Gong, X., Liu, B., Chen, K.,
Zou, W.: Revery: From Proof-of-Concept to Exploitable. In: Procs. of the ACM
SIGSAC Conference on Computer and Communications Security (CCS) (2018)

39. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: Run-
time Intrusion Prevention Evaluator. In: Procs. of the Annual Computer Security
Applications Conference (ACSAC) (2011)

40. Xu, L., Jia, W., Dong, W., Li, Y.: Automatic Exploit Generation for Buffer Over-
flow Vulnerabilities. In: Procs. of the IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS) (2018)

41. Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.:
PAriCheck: An Efficient Pointer Arithmetic Checker for C Programs. In: Procs. of
the ACM Symposium on Information, Computer and Communications Security,
(ASIACCS) (2010)

https://github.com/hrosier/ripe64
https://valgrind.org/docs/manual/sg-manual.html

	Divak: Non-invasive Characterization of Out-Of-Bounds Write Vulnerabilities

