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ABSTRACT

In today’s era of the Internet of Things, we are surrounded by
security- and safety-critical, network-connected devices. In par-
allel with the rise in attacks on such devices, we have also seen an
increase in devices that are abandoned, reached the end of their
support periods, or will not otherwise receive future security up-
dates. While this issue exists for a wide array of devices, those that
use monolithic firmware, where the code and data are opaquely
intermixed, have traditionally been difficult to examine and protect.

In this paper, we explore the challenges of retrofitting monolithic
firmware images with new security measures. First, we outline the
steps any analyst must take to retrofit firmware, and show that
previous work is missing crucial aspects of the process, which are
required for a practical solution. We then automate three of these
aspects—locating attacker-controlled input, a safe retrofit injection
location, and self-checks preventing modifications—through the
use of novel automated program analysis techniques. We assemble
these analyses into a system, Shimware, that can simplify and fa-
cilitate the process of creating a retrofitted firmware image, once
the vulnerability is identified.

To evaluate Shimware, we employ both a synthetic evaluation
and actual retrofitting of three case study devices: a networked
bench power supply, a Bluetooth-enabled cardiac implant monitor,
and a high-end programmable logic controller (PLC). Not only could
our system identify the correct sources of input, injection locations,
and self-checks, but it injected payloads to correct serious safety
and security-critical vulnerabilities in these devices.

CCS CONCEPTS

• Security and privacy→ Embedded systems security.

1 INTRODUCTION

Over the last twenty years, advances in wireless networking tech-
nology and in the design of embedded systems have led to a shift in
the way technology integrates with our daily lives. This movement,
known as the Internet of Things (IoT), represents the elimination
of the barrier between networked, interactive devices and more
mundane physical objects and appliances.

In the last six years, this phenomenon has become tangible to
consumers, with the mass-market availability of connected devices
for homes and businesses, including thermostats, lighting, physical
security, and a variety of sensors. Moreover, these embedded devices
also form the backbone of critical infrastructure and drive a wide

range of military systems and applications; their security has direct
implications for operations both in cyberspace and the real world.

Unfortunately, even when bugs are found and reported, this does
not guarantee that a fix will be available. A worrying trend in IoT
devices is devices abandoned by vendors [32, 43], or otherwise ex-
cluded from support [1], which do not receive security patches.
Since embedded systems based on monolithic firmware cannot be
simply updated by updating the operating system or libraries, vul-
nerabilities in these systems have a much longer patch latency due
to the extra work involved in creating and testing fixes. For exam-
ple, the Urgent/11 [33] buffer overflow vulnerabilities affect such
a wide variety of real-time operating systems and libraries [11] that
it is unclear whether and how a patch will be available for many of
these systems. Unfortunately, the increasingly safety- and security-
critical nature of many of these devices means that users must patch
or replace the device. In some cases, replacing the device may not
be physically possible or financially practical, and users must take
matters into their own hands.

Since the firmware’s source code is generally not available, patch-
ing the compiled binary firmware could be the only viable option.
Recently, organizations such as the US’s Department of Defense
have recognized the severity of the problem through the creation of
grant programs [14, 35] seeking binary patching technologies. How-
ever, in an interesting twist, such solutions are hindered by the secu-
rity community’s own attempts to increase hardware and firmware
security. Chip vendors and firmware authors have integrated nu-
merous counter-measures designed to prevent unprivileged access
to devices, evenwith invasive physical access; these include features
such as read-protected flash memory on chips and built-in encryp-
tion [8, 19, 46]. These were designed to stop malicious attackers, but
unfortunately they also reduce the scope of third-party patching
capabilities. Even when the firmware can be successfully obtained,
numerous challenges still exist that complicate current approaches.
Current solutions tackling binary rewriting work primarily on ELF
files [27, 49, 50]. These approaches leverage the metadata present
in ELF headers to re-arrange code, fixing code offsets and pointers.
However, such metadata is often not available for firmware. Many
devices that rely on smaller or lower-power CPUs runmonolithic (or
blob) firmware, in which the code and data, including libraries, are
opaquely intermixed into a single file. To patch it, analyses would
need to be able to safely re-arrange code, which requires a complete
and accurate control-flow graph—otherwise, unsound approaches
would harm the functionality of the device. Thus, in the case of
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monolithic firmware, we are left with only Detours-style patch-
ing [25], where code is inserted into an otherwise-unused region,
and the instructions of the program are altered to use it. Worse
yet, without metadata, and without an operating system, there is
no standard source of input data that a patch can process to make
security-related decisions. Finding the ideal location to insert this
additional code is also difficult, with no guarantees of available per-
sistent storage, and no simple way of determining content that is
safe to overwrite—not tomention space issues due to the limited size
of firmware images. Finally, to make these systems robust, firmware
typically checks its content to ensure that it is not intentionally or
accidentally modified; such checks must be overcome before any
kind of binary patching can happen.

Recent work has recognized the importance of updating mono-
lithic firmware with patches [23, 26, 34]. Unfortunately, none of
these solutions is complete. HERA [34] and RapidPatch [23] assume
the presence of specific run-time environments that are used for
patching (a built-in hardware debugging feature on ARM Cortex-M
processors and an eBPF-based runtime environment, respectively).
Moreover, both systems assume that the firmware includes symbols
(so it is easy to find the right place for a patch) and do not worry
about the space needed to add code. DisPatch [26] goes one step
further and automatically identifies the right patch locations, but
only for Robotic Aerial Vehicle (RAV) firmware. It also does not
address the questions around the space required for a patch nor the
problem of (self-)check routines.

In this work, we take the first steps to enable practical and general
end-to-end security retrofitting for monolithic firmware binaries.
We first identify the concrete pre-requisites and challenges an an-
alyst needs to consider to perform retrofitting on a given device.
Then, we propose novel automated reverse-engineering techniques
able to guide the analyst through the process to themaximum extent
possible. While the immense hardware and software diversity in
monolithic firmware-based devices does not allow for a full automa-
tion of the retrofitting process, our techniques automate tedious,
time-consuming steps, which let the analyst focus on the task of
actually mitigating the vulnerability. Specifically, our techniques
perform three fundamental steps that are needed to retrofit firmware:
(1) identifying attacker-controlled sources of input, (2) identifying
memory locations suitable for inserting a patch, and (3) identifying
verification mechanisms that prevent the deployment of a patch.

We combine the aforementioned components into a system,
Shimware, that is able to perform all of these tasks on a monolithic
firmware image and insert a patch payload to mitigate a given vul-
nerability. Our system is based on the popular open-source angr [45]
binary analysis framework,which allows forminimizing effortwhile
the handling of the diverse architectures and binary formats found
in firmware. This system enables a technical analyst to quickly
retrofit firmware to secure critical embedded industrial, medical, or
military systems, when replacement is impossible.

We first evaluate the capabilities of our system to identify the
firmware’s sources of input on a dataset of both synthetic and real-
world firmware images, and show that the system can locate the
IO-related code of a program with a low false-positive rate. Then,
we showcase the effectiveness of our system by retrofitting fixes
for severe security- and safety-critical vulnerabilities in three real-
world devices: a high-end Programmable Logic Controller (PLC)

found in factory and military equipment, a Bluetooth-enabled car-
diac implant monitoring device, and a network-enabled laboratory
power supply. These devices contain vulnerabilities that are not
the result of an implementation error, but a significant defect in the
design of the device itself.

In summary, our contributions are as follows:
• We examine and enumerate the challenges inherent in the

security retrofitting of real-world embedded devices, and
highlight why current approaches are incompatible with
monolithic firmware images.

• We propose novel analyses that can automatically analyze
a firmware image and provide an analyst with the informa-
tion needed to locate sources of attacker-controlled input,
safely insert a patch payload, and ensure that self-checks
preventing such modifications are bypassed.

• We implement these techniques in a system, Shimware,
and show its generality and effectiveness both through syn-
thetic evaluation, and through the mitigation of severe logic
vulnerabilities in three real-world, safety-critical devices.

Source code for the analyses in this paper can be found at: https:
//github.com/ucsb-seclab/shimware

2 BACKGROUND

In this section, we clarify aspects related to firmware retrofitting and
describe the challenges that are faced when creating and deploying
a patch for a monolithic firmware sample.
Monolithic Firmware. In contrast to more familiar programs
that run on general-purpose computers, we refer to the purpose-
built, device-specific software running on an embedded system as
firmware. In particular, many small, low-power, or highly-integrated
devices use monolithic (also called bare metal or blob) firmware,
which is characterized by an opaque mass of intermixed code and
data, with no standardized metadata whatsoever describing its con-
tent.
Memory-mapped IO (MMIO).Onmodern architectures (e.g.,mod-
ern ARMmicrocontrollers), when the firmware of a device wishes to
access the various internal peripherals of its system-on-a-chip (SoC),
it uses memory-mapped IO (MMIO). In this scheme, each peripheral
is given a special region in the memory address space; normal load
and store instructions targeting this region address the peripheral
itself, instead of normal memory. Within each peripheral’s region,
multiple memory locations (confusingly called MMIO Registers)
serve different purposes, such as checking the peripheral’s status,
adjusting its configuration, or sending and receiving data. While
these broad classes represent useful archetypes for MMIO registers,
there is no standard governing the layout or semantics of these
MMIO registers: they are known to vary widely, even between CPU
models in the same product line [22]. Understanding these registers
requires consulting the chip vendor’s datasheet, if available.

2.1 Challenges & Goals

In our threat model, we assume a remote attacker who is able to
exploit an arbitrary vulnerability due to a programming mistake.
This can be a buffer overflow bug or an error in the program’s logic.
We assume that the root cause of the vulnerability can be mitigated

https://github.com/ucsb-seclab/shimware
https://github.com/ucsb-seclab/shimware
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Figure 1: Shimware overview. Our static-symbolic analyses automatically identify attacker controlled sources of input (IOFinder), memory regions where to insert a patch payload

(LocationFinder), and self-checks that prevent firmware modifications (SelfCheckFinder). The Shimmer component then assembles a final, modified, firmware image.

by introducing or replacing some code (that is, by introducing a
patch). The attacker does not have physical access and can only
attack the device remotely.

In the following, we walk through the process that an analyst
uses to create a patch for an embedded system, and discuss the chal-
lenges inherent in each step and our solutions to these problems.
At first glance, the patching process would seem to entail simply
taking the firmware code, altering some bytes in it to fix the vul-
nerability, and running the new version. However, the reality of
embedded systems—and even the best-practices advocated by the
security community—can hinder third-party security retrofitting.
Fortunately, some of these steps can be automated by Shimware’s
analyses, shown in Figure 1.

Obtaining the Firmware Code. For desktop programs, this step
is trivial; the analyst already has the program, as they are able to
run it. In an embedded system, such as one based on monolithic
firmware, this is not so simple. Unfortunately, vendors making their
firmware available is incredibly rare, necessitating the extraction
of firmware: either from the device itself, or from a mobile or desk-
top application designed to update it. Embedded systems routinely
implement hardware counter-measures (e.g., [9, 46, 48]) to make
this challenging for the analyst; bypassing these is an important
prerequisite, but is beyond the scope of this work.

Creating a Patch. A security patch should, by definition, have an
effect related to the processing of input from an attacker-controlled
source. With no standard sources of input, but numerous hardware
peripherals that can generate input data, the analyst currently has
the tedious task of manually reverse-engineering the firmware and
hardware to find the location in the firmware where data from the
outside world is accessed. Although we know that the location and
function ofMMIOperipherals and registerswill vary,we can assume
these locations to be fixed at compile-time, and they can be found in
the program as constant pointers to a peripheral or specific register.
However, there are numerous places where hardware is accessed
in ways that do not constitute input; serial ports and buses are gen-
erally more useful for security retrofitting than timers, clocks, and

power controls. Therefore, we propose IOFinder, an analysis that
locates the locations where externally-controlled data is accessed
by the firmware.
Inserting a Patch. Once it has been developed, a patch must be
inserted into the firmware image. On a system whose firmware
contains a normal filesystem, this could be as simple as replacing
an ELF file. As we target monolithic firmware images, we are left
with the more difficult challenge of finding a place in the firmware
to safely add code, without affecting the original functionality. Un-
fortunately, we cannot simply insert code next to the source of
attacker-controlled data and shift the remainder of the binary, due
to the known-hard problem of locating and adjusting all pointers,
which would become incorrect due to the shift. Therefore, the most
effective option is to insert the additional code in an unused region
of the firmware sample, and substitute an instruction near the source
of data for a branch to this region [25]. Deciding which regions are
safe to use, however, is its own challenge. As a result, our approach,
which we call LocationFinder, finds either known-unused space on
the device’s flash memory, or known-expendable code regions.
Deploying a Patch.Most firmware designs include some sort of
verification mechanism to verify its integrity, either when the sys-
tem boots, or when it is upgraded. Which checks we must deal with
also depends on our firmware injection vector. We typically have
the choice of using either the firmware’s own update mechanism to
deploy our retrofit or using a hardware injection mechanism such
as JTAG or direct flash memory access. If we find an unprotected
JTAG port on a device and the firmware’s digital signatures are only
checked during an over-the-air update, we can bypass this entirely
by flashing our own firmware via JTAG. Therefore, in order to suc-
cessfully deploy a patch, wemustmitigate any self-check that affects
either our chosen firmware installation vector or the firmware’s
boot process. We thus propose an analysis, SelfCheckFinder, able to
identify many forms of self-checks present in firmware by looking
for operations utilizing the content of the firmware itself.

In summary, the state of modern firmware protections and hard-
ware countermeasures makes it difficult for an analyst or a tool
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to patch and deploy a monolithic firmware image. We discuss the
conflict between security best-practices and security retrofitting
in Section 5. In this work, we aim to aid the analyst in retrofitting
firmware, where possible, by automating the tasks of finding sources
of attacker-controlled data, safe code injection locations, and code
self-checks.

3 METHODOLOGY

In this section, we propose our automated program analysis ap-
proach to simplify the process of security retrofitting monolithic
embedded firmware. We identify three time-consuming, previously-
manual tasks needed for firmware retrofitting, and propose analyses
to automate them: locating the firmware’s IO routines (in binaries
without symbols), finding space for a payload, and mitigating any
built-in self-checks on the firmware. The outputs of these analyses
can be combined in a final assembly phase to allow an analyst to
successfully inject a retrofit payload into a firmware image.
Assumptions.Aswehavementioned inprevious sections, firmware
retrofitting of real devices is by no means a fully-automated process,
regardless of method; we make a few assumptions about the sce-
nario our system is used in. First, we assume the analyst is able to
extract, and replace, the complete firmware images, including any
bootloader stages that perform selfchecks; physically extracting or
injecting firmware is out of scope for Shimware. Second, we assume
the analyst knows how the vulnerability being patched is triggered,
such as via a reproducing input. The analyst must know the archi-
tecture and CPU model of the device being patched, either from a
datasheet or physical inspection. We assume that the analyst can
express the patch merely in terms of inspecting device input; while
Shimware’s patches are limited only by available space, we discuss
how this approach may influence the writing of patches in Section 5.
Workflow example. To outline the process of using the tool, and
introduce its components (shown in Figure 1), we will discuss how
an analyst would use our system to remediate a security vulnera-
bility in a hypothetical industrial control system, such as the PLC
discussed in Section 4. While our system is primarily targeted at
facilitating technical analysts in retrofitting firmware, a sufficiently-
advanced end user could also leverage the system if needed. In this
hypothetical scenario, our analyst works in the public sector, and
aims to fix a security vulnerability in an irreplaceable PLC-driven
machine, which is being actively exploited over the network.

First, the analystmust gain access to the device, gather some basic
facts about it, and obtain its firmware image. Our analyst identifies
an unprotected JTAG port on the device, from which they are able
to obtain the firmware, and identify the ARM CPU’s model number.

Next, the analyst must identify the cause of the vulnerability. In
the event of an actively-exploited flaw, this may be readily apparent,
but thismust be translated into a firmwaremodification. The analyst
notes that a specially-crafted packet is required to trigger the vulner-
ability, and writes, in C, the payload to detect and stop it. However,
the analyst nowneeds to find the point in the firmware at which new
packets are read from the device’s network controller. Note that this
scenariomatches well with prior work on (hot-)patching [23, 26, 34],
which assumes that the firmware code and patch are provided.

Using the chip’s model number and firmware image, the analyst
runs the Shimware analyses. This returns the location of a CRC

check which needs to be replaced (from SelfCheckFinder), an empty
location in the firmware to put the payload (from LocationFinder),
and a set of locations where IO is performed in the firmware (from
IOFinder), with one labeled as belonging to the onboard Ethernet
controller. The analyst provides these details to the Shimmer, along
with the payload’s source code, and a modified firmware image is
produced.

Finally, the analyst uses the previously-discovered JTAG port to
deploy the firmware to the device. Naturally, the analyst now needs
to ensure that their retrofit did not break any functionality. The an-
alyst uses the PLC’s own diagnostic self-tests, as well as diagnostic
data for the entire machine, to ensure that it still meets its design
specifications with the retrofit in place.

While this process may not be fully-automated, it avoids the need
for time-consuming, error-prone, manual reverse-engineering of
the firmware. We demonstrate that this process is reasonable by
applying Shimware to real-world devices in Section 4.

All of these analyses are implemented on top of the angr program
analysis framework. We discuss implementation details related to
our usage of angr in Appendix A.

3.1 IOFinder

The first step in using Shimware to defend a device from attack is
to figure out where the malicious input is possibly getting into the
firmware. Since we deal with monolithic firmware without function
names or library information, and cannot rely on the presence of
a standard library that provides IO functionality, we must reverse-
engineer the binary to find where the attacker’s input comes from.

Aswe outline in Section 2, there are two significant complications
with locating IO. First, in most modern architectures, particularly
ARM, we cannot tell statically which instructions in the binary per-
form IO operations, as normal load and store instructions are used
to access peripherals. Second, the location, layout, and semantics of
each hardware peripheral varies widely with the CPU on which the
firmware is designed to run. Even when these accesses are located,
firmware may perform numerous IO operations that are of no inter-
est to the analyst, such as setting and clearing configuration flags,
or checking status registers.

That said, we are able to leverage a few key insights to make this
task tractable through automation. First, and most importantly, the
location of MMIO-based peripherals is fixed by the hardware and
known at compile-time by the firmware’s compiler, meaning that
the constants representing these peripherals will be observable in
the program. However, these pointers can stored in global memory,
or used as function arguments to the IO-related functions to select
which peripheral to use, leaving us with some indirection to resolve
as well. Finally, while the semantics of each peripheral will vary
between chip models, we can use metadata shipped with debugging
tools to help label these for the analyst, and making their decision
of which data to intercept much easier.

We combine these insights into our IOFinder, which uses a hybrid
static-symbolic approach to locate interesting IO functions. This
analysis performs the following steps.

Compute the Fully-initialized State. A common pattern in firm-
ware is to store global pointers, structs, or objects representing the
configured IO devices in global RAM instead of hard-coding them
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into the program. These are often initialized at the beginning of
the firmware’s boot, far from where they are actually used. As a
result, to know which functions in the program perform MMIO
operations, we need to compute the state of the program after these
initializations occur. To simulate this, we created a static analysis
that locates and performs any assignment of a constant pointer into
global memory, and creates a state consisting of the union of all
such initializations. More details can be found in Appendix A.

Find IOPointers. Leveraging the fully-initialized state, we scan the
binary for references from the code to the architecturally-defined
IO region. We also scan global memory locations previously found
to be initialized to an IO pointer. Since any IO activity must include
one of these pointers, the result of this step is the set of all functions
that contain such an access.

Usage Pattern Analysis. Since all of these pointers are usually not
declared or accessed near where the actual IO operation occurs (e.g.,
they are passed into another function as an argument), we utilize
symbolic execution to determine how these pointers are used and
locate specific IO operations of interest. We chose every function
that defines a pointer to an IO memory area, or uses a global mem-
ory location that is initialized to an IO pointer, as entry points for
symbolic execution. Since many IO operations are inconsequential
to the analyst, instead of immediately logging all IO operations en-
countered, we apply dynamic taint tracking to understand how data
is used. During the symbolic execution, we use the following rules:

• When data is read from an MMIO peripheral, we taint the
resulting data.

• When data is written to an MMIO peripheral, we examine
the expression relating to the data to be written. If data
being written was previously also read from MMIO, this
is determined to be a read-modify-write pattern for setting
and clearing flags, and is discarded.

• When data is written to an MMIO peripheral, if the data
is constant, we ignore it, as this indicates that the data is
not a result of a meaningful behavior from the rest of the
program (e.g., flags and configuration).

• When data iswritten to anMMIOperipheral, and is not from
IO or a constant, it must have come from a function argu-
ment or global memory, and is logged as a source of output.

• When data is written to non-MMIOmemory, we check if the
destination is related to a function argument (e.g., a pointer
to a buffer) or global memory. If we are writing to such a
location, and the data came from MMIO, this is logged as
it represents a location in which data from MMIO is made
available to the rest of the program.

• When the starting function returns and data from MMIO is
returned by value, this also logged as it represents IO data
being made available to the outside program.

• When data read fromMMIO is itself used as a pointer, this is
logged as being a potential source of Direct Memory Access
(DMA), as embedded devices typically handle pointers to
the buffers they are operating on.

This produces a set of CPU instructions that perform some kind
of input or output accessible to the surrounding program, along
with the exact MMIO address that was targeted.

1 // SPI bus connects to the 802.15.4 radio

2 void trx_spi_init () {

3 ...

4 // master is a global , 0x42001800 is the SPI controller

5 // Both are propagated into spi_init

6 spi_init (&master , (Sercom *const)0x42001800 , &config);

7 ...

8 }

9 status_code __fastcall

spi_init(spi_module *const module , Sercom *const hw, ...) {

10 // The address 0x42001800 is stored into &master

11 module ->hw = hw;

12 ...

13 }

14 uint8_t __fastcall trx_reg_read(uint8_t addr) {

15 spi_master = master.hw;

16 data =

spi_master ->SPI.DATA.reg & 0x1FF; // variable data is tainted

17 ...

18 return data; // MMIO_READ detected via return value

19 }

Figure 2: Example code from the atmel_6lowpan_udp_rx firmware from [12]. Without

resolving indirection statically, we cannot see the pointer to the SPI bus being used in

trx_reg_read(). Names of functions and variables provided only for clarity and not known

during analysis.

External Peripheral Information. The analyst must now decide
which peripheral is relevant to their retrofitting scenario, so that its
data can be used to develop a retrofit payload. Inevitably, firmware
can access data fromperipherals that are uninteresting to the analyst,
in the same manner as those that represent external input. While
these are not false positives in the traditional sense, we can use some
information about the microcontroller’s hardware to help the an-
alyst quickly locate peripherals related to their retrofitting scenario
by labeling the names and registers of peripherals accessed during
the symbolic execution step. For example, on the ARM architecture,
SystemView Debugger files (SVD) are available in an online repos-
itory [36] for many popular embedded ARM CPUs, which can be
queried by IOFinder to label the results with names and descriptions.

Listing 2 shows a set of IO-related functions from the
atmel_6lowpan_udp_rx firmware binary, taken from the dataset
used in [12]. This binary implements a 802.15.4 mesh network
node, with a radio module controlled over the Atmel SAMR21’s
SPI bus. During the firmware’s boot, the function trx_spi_init()
is called, which sets up the SPI bus selected at compile-time to con-
trol the radio and stores a pointer to it in a global struct. Much
later, when data is received, the firmware’s interrupt handler calls
trx_reg_read(), to obtain data from the radio. If we were to ex-
amine spi_trx_reg_read() without its names, and without any
other context, we would see a function that adds an offset to a
value in memory, and dereferences it, which may or may not be
an IO operation, depending on what this global memory value
(&master) is. When we compute the fully-initialized state, however,
we notice &master->hw stores a pointer to the SPI bus controller
(0x42001800), and this is added to our fully-initialized state. When
we run our IOFinder using this state, we notice that spi_master-
->SPI.DATA.reg is a pointer to the IO region and taint the variable
data. When the value of data is returned, the analysis records this
as a MMIO read operation, since the data from the SPI bus is being
made available to the rest of the program. Since we know that this
sample was built for an Atmel ATSAMR21G18A, we can use the
available SVD files for this chip to automatically label this access as
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coming from the SERCOM4->I2CM_DATA register, the data register
of one of the chip’s combined SPI/I2C/USART interfaces.

3.2 LocationFinder

To retrofit a monolithic firmware image, we need to find a location
in the binary where we can insert the payload. However, as dis-
cussed in Section 2.1, this is not simple. While finding a safe region
to insert our payload can be shown to be undecidable – proving
that a memory region is not used by a program requires solving the
halting problem – we can make some assumptions to find regions
in the program that are highly unlikely to be used.

First, we consider monolithic firmware images, which come from
non-volatile storage in embedded systems. One characteristic of this
storage is that it is not easily written to; in order to perform a write
operation, a program typically needs to manipulate an MMIO-based
peripheral, erase an entire page of the flash, and replace it with a new
one. As a result, this means that unlike highly volatile data residing
in RAM, our firmware image can be assumed to be relatively static.

Second, we may not always have sufficient free space to insert
our payload; firmware binaries typically need to fit into relatively
small storage spaces, and are usually compiled with sized-focused
optimizations. Without any guarantees on available insertion space,
we are left to remove something from the binary itself to make room.
This too can be shown to be undecidable; furthermore, existingwork
on this area [37, 42] relies on having complete, accurate control-flow
graph information, which is not possible in this setting.

To address these issues, we implement the LocationFinder lever-
aging a series of heuristics to find available regions in the binary.
EmptyRegionFinder.This analysis locates regions of the firmware
that are unused. We locate contiguous regions of repeating values
(typically 0 or 0xFF), and track the largest one found in the binary.
We ignore regions that are statically referenced in the binary, such
as when pointers referring to the region are used in the program.
While we cannot guarantee that a pointer to a nearby location is not
used to access a seemingly-empty region, such as in a loop, we note
that flash memory, such as found on the devices used in this work,
is written page-at-a-time, and is not an efficient storage media for
data that needs to be modified often.
SafeFunctionDetector.We locate functions that are safe to remove
from the binary. To sidestep the undecidability of this problem, we
use a very conservative definition of the functions we wish to re-
move. In some embedded systems, particularly those with safety-
critical roles, functions that test hardware’s correct behavior are
occasionally present. An interesting property of such functions is
that these functions appear meaningless from a purely software-
focused perspective. For example, a function that tests memory and
registers might perform actions such as writing a pattern, reading it
back, andmaking sure the values before and after are equivalent.We
note that in the absence of severe hardware failure, removing such
functions does not, by definition, alter the behavior of the program.

Therefore, we use targeted symbolic execution to identify such
functions. We symbolically execute every function in the binary,
after statically pruning functions that cannot meet this definition.
If a function branches based on its input, calls a function, writes
to non-stack variables, or returns a value based on its input, we
cannot guarantee it is safe to remove. In other words, if every path

constraint in the function simplifies to true, and the function is void
or returns a constant, we can eliminate it. This narrow definition
makes this analysis fast by constraining the amount of execution
needed to make a determination.

The LocationFinder uses both of these analyses, and picks the
largest available region to inject the analyst’s payload. The analyst
then uses available testing corpora, such as test programs, internal
self-checks, and companion apps, to verify that these results are
correct.

3.3 SelfCheckFinder

To deploy a retrofitted firmware image, we have to locate any places
where the firmware checks its own integrity so that they can be
replaced. Defining what a self-check is, however, must be done very
carefully. Cryptographic functions are a logical tool for implement-
ing self-checks, and previous work [21, 29] proposes various static
and dynamic approaches to finding cryptographic functions. There
are plenty of self-checks (e.g., the simple addition-based checksum)
that would not be detected by these schemes, but wewould still need
to locate them here. Moreover, not all cryptographic functions are
self-checks; we only are interested in those which actually involve
the content of the firmware. Finally, modern SoCs include hardware
support for CRCs and cryptography, meaning that a self-check’s
actual math operations may not appear in the code at all.

To find self-checks, we make two key observations: First, similar
to the IOFinder, our “self-check” must utilize a pointer to the begin-
ning of the region it wishes to check. Theoretically, this is the base
address of the binary, but we note that monolithic firmware images
that are internally composed of a bootloader and an application
may have a scheme in which one region checks another. Therefore,
we define a self-reference to be a pointer to the firmware, which is
page-aligned (on embedded ARM CPUs, aligned to 0x400). Flash
memory on embedded CPUs typically only allow writing an entire
page at a time, and hence verification of the contents occurs along
page boundaries as well.

Second, we know that, with such a pointer, there is some kind of
loop that uses the pointer to access the binary, in order to compute
the self-check. As a result, there is likely a single instruction in this
loop that reads from a large number of locations within the binary.

With these two ideas in mind, the SelfCheckFinder proceeds as
follows.
Compute the Fully-initialized State. Using the same technique
described in Section 3.1, we compute a fully-initialized state, but
this time considering only pointers that are self-references.
Identify Self-references.We prune the list of all functions in the
binary to contain only those that use a self-reference, or use global
memory known to contain a self-reference.
Behavioral Analysis.We employ symbolic execution on the re-
maining functions, and look for places where the same instruction
reads from many locations in the firmware. Precisely, we consider a
function a self-check if it accesses at leastN locations,whereN is also
the number of loop iterations allowed during the execution. In short,
if for every new iteration,we get an additional access to the firmware,
this loop may implement a self-check. We exclude from this set any
function whose loop also writes to N locations; these include com-
mon primitives for string processing such as memcpy or memmove.
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The analysis produces a list of self-checks, which should be re-
placed in order for the firmware to boot when modified. The analyst
will determine that this result is correct by actually performing a
retrofitting; the firmware will not boot if the self-checks are not
removed.

3.4 Shimmer

The final step of Shimware is to assemble all of the information
collected in the previous steps, and the analyst’s manually-created
payload (the patch), into a modified image that can be deployed
to the device. While the content of the analyst’s payload is out-
side the scope of this work, Shimmer allows for payloads to be
written in C, after which they are compiled to match the target
device’s sub-architecture, and size-optimized into a binary blob.
The Shimmer module implements a model of retrofitting in which
the analyst’s payload is triggered right after input is read from the
potentially attacker-controlled source (found the the IOFinder). As
in Detours [25], the instruction at the trigger location is moved to
the start of the patch payload, and replaced with a simple jump
instruction pointing at that payload. The only manual task left to
the analyst is to choose which source of input to monitor, from the
list found in the IOFinder analysis. The Shimmer will replace each
detected self-check with a portable checksum routine, and select the
largest detected empty region as the payload’s injection location.
The system supports the application of multiple patches, with the
only limitation being a one patch per trigger instruction limit, and
the amount of available space within the binary.

4 EVALUATION

To assess the capabilities of our tool, we first perform an evaluation
of our IOFinder and LocationFinder on a dataset of samples collected
from related work. Then, to evaluate the full sysem end-to-end, we
present three case studies where we show how Shimware success-
fully led to security retrofitting of three real-world, safety-critical
devices. We understand that it would be desirable to expand the
evaluation to more than three real-world targets. However, we do
want to note the difficulty of extracting firmware from such devices
as well as finding and patching relevant vulnerabilities. Unfortu-
nately, this difficulty extends to evaluating the SafeFunctionFinder
and SelfCheckFinder subcomponents at any kind of scale. Both re-
quire a set of devices for which we have the complete firmware,
and a functioning device to properly evaluate, as knowing whether
these analyses succeeded requires us to observe the functioning
properly; development board samples used in related work do not
contain these features for our tools to find1. Instead, we evaluate
these approaches using the case studies later in this section. The size
of our dataset is consistent with prior work on firmware patching:
HERA [34] used two vulnerable medical devices and one (existing)
vulnerability in the FreeRTOS operating system; RapidPatch [23]
was evaluated on bugs in FreeRTOS, ZephyrOS and two libraries
(running on five common embedded devices); and DisPatch [26]
was applied to two RAV firmware images (3DR IRIS+ and MantisQ).

1Note that we did run LocationFinder and SelfCheckFinder on these samples, and they
correctly produced no output.

4.1 IOFinder Evaluation

First, we explore the performance of the IOFinder analysis, on
firmware samples obtained from previous work.

We can use development boards and open-source firmware sam-
ples, for which source code and symbols are available, to serve as
ground truth for the IOFinder analysis. To build our dataset, we ob-
tained 17 samples from related work [12, 20]. We used all available
samples that were built as “bare-metal;” we discuss challenges with
mbedOS, Arduino, and other library-OS frameworks in Section 5.
These samples represent five microcontroller models, from three
vendors, with widely-varying peripheral and software driver imple-
mentations, and a diverse set of applications, including a PLC, CNC
mill, and mesh network nodes. Using these samples, and the hard-
ware forwhich theywere built, we enumerated the set of peripherals
that actively communicate with the outside world, as these are the
peripherals an analyst would potentially consider as a source of data
for a security retrofit. This process was manual, to account for dead
code, and to consider only those peripherals that actually transmit
and receive data externally. This specifically includes peripherals
such as serial ports, buses, and sensors, and excludes timers, clocks,
power control, and other common peripherals that do not constitute
communication.

Table 1 shows our results; the MCU column indicates which mi-
crocontroller model the firmware was designed for, and the “Useful
Peripherals” column lists the peripherals determined to be useful
for retrofitting. The “Tot. No. Functions” column shows the number
of functions in the binary, as identified by angr’s static analyses,
while “No. Candidate Functions” refers to how many of those were
selected for further investigation by our static heuristics. During the
dynamic phase of our analysis, the symbolic execution generated
many load and store operations from the IO region (“Tot. No. IO
Ops” column), of which a much smaller number (“No. Filtered IO
Ops.”) survived our heuristics and are considered potentially useful
to the analyst. Finally, the “No. Useful IO Ops.” column shows how
many of those operations flagged by the analysis were related to
the set of useful peripherals.

With regards to our static analysis phase, the results show that
we are able to effectively focus our analysis on the part of the pro-
gram containing IO, while our computation of the fully-initialized
state allows us to draw proper correlations between IO initialization
functions and later uses.

During the dynamic phase, the results show that inmany caseswe
are able to significantly reduce the amount of IO the analyst would
need to consider. However, we note that the difference between the
useful set of peripheral accesses and the set of filtered IO operations
reported to the analyst does not constitute false positives in the
conventional sense. All of the reported IO operations are indeed
valid IO operations, and are useful for various reverse-engineering
tasks. Even peripherals that are not important for the task of shim-
ming, such as clocks and timers, can have their data stored andmade
available to the rest of the program, and would be reported as such.
IOFinder automatically applies external labeling information from
the cmsis-svd [36] database, which labels each peripheral register
for all supported CPUs, allowing an analyst to quickly locate any
peripheral of interest in the output. Actual false positives could
theoretically result when the underlying static analyses are unable
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to determine the correct calling convention of functions (e.g., angr
determines a function returns a value to the caller, when it does not),
althoughwe did not notice any such cases in the output of this exper-
iment. The analysis does, however, have a few false negatives (“No.
Missed IOOps.” column). These cases all stem from an inability to de-
termine a correlation between an IO-related initialization function
and an actual IO function, due to the use of nested structs and C++
objects to store the IO configuration. To test this, we implemented
a mode for IOFinder where the analyst can manually designate
IO-related structs, and we were then able to locate all of the miss-
ing peripherals. Future advances in binary type recovery related to
structs will help us determine this information automatically.

4.2 LocationFinder Evaluation

Asmentioned previously, we require real firmware to assess the abil-
ity of LocationFinder to identify “empty” space that can be used to
accommodate the code for the patch. Hence, we cannot use ELF files;
they do not contain empty space, since this space is created when
the device is flashed. Fortunately, wewere recently able to obtain the
dataset of monolithic firmware from the FirmXRay paper [53]. We
randomly selected 50 samples and ran theLocationFinder to get a bet-
ter understanding of its behavior. It detected an average of 375 bytes
of available patching space. This actually excludes two outliers with
a massive 65K and 75K of empty space, which would have otherwise
significantly increased the average. 375 bytes is more than enough
to accommodatemost patches (including the oneswe created for our
case studies).We found space in all 50 samples, although the smallest
region consisted of 28 bytes in 3 of the samples. While we cannot
completely verify the usability of space without the hardware or
ground-truth data, manual analysis confirmed that the Location-
Finder is able to find meaningful space in real-world firmware.

4.3 Case Study: Power Supply

We used Shimware to retrofit an RD DPS5015 [7] lab power supply
unit (Figure 3).

Figure 3: RD DPS5015 power supply, opened [7]

This unit allows an engineer in a scientific or industrial setting to
adjust the voltage and current available on the device’s front panel
connectors, to power and test devices during development, or for lab
experiments. However, like manymodern lab power supplies, it also

has communications capabilities, to allow for remote automation,
over RS485, Bluetooth, or WiFi, depending on the configuration.
The unit contains an STMicro STM32F100 ARM Cortex-M3-based
CPU, and accesses all remote communications mechanisms over a
serial port.

Unfortunately, the legitimate functionality of this communication
mechanism can allow anyonewith network or radio proximity to the
device to remove all safety limits, and adjust the voltage or current
to any value, causing damage or destruction of the device-under-
test, and potentially of the unit itself [18]. While simply disabling
network connectivity is one way to make this device safe, we would
instead like to add the functionality that the voltage limits specified
by the operator on the physical device represent a maximum of
what the remote automation can set.

We obtained the popular OpenDPS firmware used with this de-
vice [4] by installing it onto our unit, and then dumping it via
the device’s exposed SWD debugging port. This yielded a mono-
lithic firmware image, in which angr’s CFG recovery detected 420
functions. The IOFinder analysis detected functions containing IO
references, out of which 109 actually performed interesting IOwhen
executed. Among these was a clearly-labeled access to the USART1
data register (USART1->DR), whichwould serve as a source of input
data. LocationFinder discovered a region of 872 bytes between what
appears to be the bootloader and the primary application of the
firmware. The SelfCheckFinder located and replaced exactly one
self-check: the use of CRC16 to validate the firmware image.

We were successfully able to retrofit our voltage-limiting inside
the firmware, and deployed it over the SWD debugging port. To
test the correct functionality of the device, we used the device’s
front panel to adjust the voltage and current settings, and manually
triggered each of the device’s configuration menu items. We also
tried the remote communication features, and verified that the only
difference was that we were unable to set the maximum voltage
higher than the one set on the front panel.

4.4 Case Study: PLC

We employed Shimware to retrofit an Allen-Bradley ControlLogix
1756 PLC [44]. This high-end, but end-of-life, product is suitable for
large automation tasks, including factories andmilitary applications.
The system comes in the form of a chassis with at least one CPU
card, and numerous IO devices depending on the application. Our
configuration contains the L64 CPU card, an analog output card,
and an Ethernet card. The CPU contains a custom ARM7TDMI-S
derivative CPU, with numerous custom ASIC components control-
ling network and communications features, presenting a unique
challenge for our approach.While we do not know theMMIO layout
of the main CPU, we knowwe are looking for input from the chassis
backplane, a proprietary high-speed bus, which is therefore likely
to be using some form of DMA.

Unfortunately, as withmany PLCs, this unit suffers from a similar
issue as the power supply mentioned above: anyone on the same
network can control it completely by default. While the device can
be configured to not accept any network traffic (e.g., via the front
keyswitch) this dramatically diminishes the usefulness of the device
in a modern automation setting. This device is also well past its end
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Table 1: IOFinder Evaluation Results. For each of the 17 samples in our dataset, we report the MCUmodel, the useful peripherals, and the results of our analysis in terms of reported IO

functions and operations. Our filtered IO operations contain all the useful ones.

Sample MCU Useful Tot. No. No. Candidate Tot. No. No. Filtered No. Useful No. Missed Actual Useful

[Dataset] Model Peripherals Functions. Functions IO Ops. IO Ops. IO Ops. IO Ops. Peripherals

atmel_6lowpan_udp_tx [12] ATSAMR21G18A ETH(SPI),I2C,UART 533 182 91 46 21 2† ETH(SPI),I2C
atmel_6lowpan_udp_rx [12] ATSAMR21G18A ETH(SPI),I2C,UART 533 182 91 46 21 2† ETH(SPI),I2C
p2im_cnc [20] STM32F429 UART 331 121 110 32 3 0 UART
p2im_drone [20] STM32F103 UART,I2C 230 71 39 38 18 0 UART,I2C
p2im_robot [20] STM32F103 I2C,UART 205 41 59 22 15 0 I2C,UART
p2im_soldering_iron [20] STM32F103 DMA(ADC),I2C(IMU),I2C(OLED) 371 99 107 40 19 4† DMA(ADC),I2C(IMU)
samr21_http [12] ATSAMR21G18A UART,ETH(SPI) 324 68 61 26 8 0 UART,ETH(SPI)
samr21_uart_polling [12] ATSAMR21G18A UART 44 35 28 16 3 0 UART
samr21_fatfs_usd [12] ATSAMR21G18A SPI(SDIO),UART 207 189 51 25 13 0 SPI(SDIO),UART
st-plc [12] STM32F401 UART(Wifi),SPI,ADC 981 278 142 49 11 0 UART(Wifi),SPI,ADC
stm32_tcp_echo_client [12] STM32F469 ETH,I2C 477 63 86 25 19 0 ETH,I2C
stm32_tcp_echo_server [12] STM32F469 ETH,I2C 478 62 80 26 19 0 ETH,I2C
stm32_udp_echo_client [12] STM32F469 ETH,I2C 468 58 86 25 19 0 ETH,I2C
stm32_udp_echo_server [12] STM32F469 ETH,I2C 463 58 80 25 19 0 ETH,I2C
nxp_uart_polling [12] MK64F12 UART 108 33 36 11 4 0 UART
stm32_fatfs_usd [12] STM32F469 I2C,SDIO 276 42 81 33 26 0 I2C,SDIO
nxp_fatfs_usd [12] MK64F12 SDHC,UART 240 59 64 17 6 0 SDHC,UART

†: We managed to cover these false negatives by providing our system with additional knowledge about the employed data structures (Section 4.1).

of support, and will no longer receive updates from the manufac-
turer. To this end, we wish to add built-in safeguards to not allow an
attacker to adjust the parameters of a running ladder-logic program
outside of safe parameters.

We obtained the 2MB firmware image through the manufac-
turer’s website. CFG recovery yielded 8,937 functions in the binary.
Of these, 593 had IO pointers.When executed, IOFinder detected 340
unique IO operations. Since the CPU is custom, we had to perform
the additional step of reverse-engineering the CPU’s MMIO layout,
but were helped by our analyses in doing so, as we could focus our
efforts on those portions of the code detected by IOFinder. Since the
amount of detected IO locations is numerous, and we estimate that
this result is legitimate, we focused on those locations which per-
formed DMA-based operations. This only consisted of 31 IO-related
instructions, representing five unique MMIO registers. All of these
appeared to be related to a peripheral at 0x40000000, which turned
out to be the DMA controller for the backplane.

SelfCheckFinder detected two self-checks, a checksum and CRC,
calculated on the whole firmware image; the Shimmer replaced
these both with a checksum, allowing the firmware to boot.

The LocationFinder’s results for this device were unusual, there
were very few empty regions, all of a small size. This is because this
firmware explicitly checked many of its empty regions to ensure
that they were indeed empty, therefore generatingmemory accesses
that led our analysis to discard such regions. However, Location-
Finder was able to locate a very large (5.7k) function, which it could
prove was safe to remove, giving us ample room for a payload. This
function appears to implement a test of the system’s ALU and regis-
ters, such as performing math, and storing and recalling the results.
From a mathematical perspective, this extremely large function,
which seems to consist of large, unrolled, loops, entirely simplifies
away when executed symbolically. The function also returns no
value, instead calling an assert-fail function if an error occurs. In our
testing, simply removing this function was sufficient, and produced
no noticeable change in the program’s behavior.

Using the above information provided by our analyses, we in-
jected a payload into the firmware, which is able to filter incoming
Common Industrial Protocol (CIP) messages, to ensure that no mes-
sage alters the variables of a running ladder-logic program outside

Figure 4: AB ControlLogix PLC [44], disassembled. The LED’s blink is clamped in the

firmware by our retrofit payload.

of compiled-in parameters. We tested the system for correct behav-
ior by running a test ladder-logic program on the device, and by
connecting the RSLogix companion software tomonitor the device’s
behavior. Our ladder logic program causes an LED connected to one
of the PLC’s output cards to blink at a certain rate (see Figure 4); we
used our payload to clamp these values between 2 and 10 Hz. We
verified that, if a CIP message is received that would set this rate
outside the bounds, that it is ignored, and a message is sent to the
operator. We should also note that, like many safety-critical devices,
this PLC has numerous self-tests, watchdog timers, and hardware
safeguards, both at boot-time and continuously at run-time, which
would have alerted us to any faults due to our retrofit.

4.5 Case Study: Pacemaker Monitor

Weused Shimwarewith aMedtronicMyCareLink 25000 pacemaker
monitor. This small hand-held device acts as a bridge between the
patient’s phone (via Bluetooth) and a pacemaker (via short-range
radio). The patient is instructed by the device’s companion app to
use the device daily to transmit cardiac data to their doctor.

Unfortunately, we (manually) discovered a flaw in how the device
employs cryptography to keep unauthorized apps and devices from
connecting to it. This allows any attacker in range of the device to
connect to it, and issue a broader set of commands to the pacemaker
than the manufacturer intended, along with accessing the contained
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medical data. For ethical reasons,wewill not speculate on any effects
this may have on the implant itself. We reported this flaw to the ven-
dor, which designated it as the high-severity CVE-2020-25183.While
we did work with the vendor on an official patch, the root cause
here is one we can fix via a retrofit, namely stopping the original
cryptographic bruteforce attack. The device contains an STM32F103
Cortex-M3 CPU, and accesses its Bluetooth controller via a serial
port. An unprotected JTAG port is present, via a pogo pin connector.

We dumped the full 1MB firmware image, including its boot-
loader, from the JTAG port. CFG recovery yielded 3,687 total func-
tions. IOFinder yielded 696 candidate IO functions. During dynamic
analysis, this produced 93 potentially-useful IO operations, which
were automatically labeled with their peripheral names. Among
these was the USART3 peripheral operating in DMA mode, our
desired source of IO. LocationFinder found a large (250k) unrefer-
enced region of flash memory at 0x80bf96c, between the firmware
itself and the non-volatile storage portion of the flash memory. Self-
CheckFinder located five self-checks, three of which were false
positives, and two of which were hardware-backed CRC32 of the
entire firmware, performed at boot-time. These false positives were
related to the firmware upgrade routine itself, which naturally loops
over the firmware and manipulates the flash memory controller.
While this may seem problematic, we note that the firmware and
app still work with this feature removed, which also has the positive
side-effect of preventing a potential conflict between our patch and
the manufacturer’s.

We tested the LocationFinder and SelfCheckFinder’s results by
inserting our retrofit payload into the firmware, and deploying it
over JTAG. When the serial port connected to the Bluetooth chip is
written to, we check the outgoing payload against the error message
sent when an incorrect cryptographic key is used. If this message is
found, we reset the device, causing a significant delay, and dramati-
cally lowering the chance of a successful attack. Because this device
is only intended to be powered on for a few minutes at a time, this
will sufficiently mitigate the risks.

The device’s companion Android app has exactly one function:
downloading the implant’s data and sending it to a doctor. It has no
menus or configuration, and after the various steps (connecting via
Bluetooth, connecting to the implant, and downloading the data),
will display a large green checkmark, indicating that it succeeded.
Our validation for this retrofit, therefore, involved ensuring that this
process still succeeded with our payload in place. We flashed our
modified firmware on the device, and installed the latest version of
the vendor’s app on an Android phone. We then obtained a compati-
ble, non-implanted, pacemaker, used the app and device to download
its data, and ensure that the app reported a successful transmission.

5 DISCUSSION

Whilewe showed Shimware in action on diverse, real-world devices,
our approach has a few limitations.

IOFinder. Our IOFinder currently does not work effectively on
firmware created on top of large firmware frameworks, such as
Arduino [2] or ARM’s mbed [30], which utilize a high level of ab-
straction, and object-oriented programming techniques to simplify
development, and ease porting to many hardware platforms. As
these requirements do not exist in final commercial devices, vendors

instead opt to use lighter-weight packages, such as those provided
by the compiler vendor, or creating their own. A careful reader may
note that these large frameworks present the ideal conditions for a
library-matching approach [12, 16], as the additional, standardized
code in these packages is simpler to locate by matching. Therefore,
these two approaches are directly complimentary; library match-
ing works well on larger libraries where static analysis fails, but
IOFinder works in situations where the libraries to match cannot
be obtained, or are customized.

Both the IOFinder and LocationFinder rely on angr’s calling con-
vention analysis to determine whether a function returns data. As
this depends on the completeness of the CFG to work, Shimware
could hypothetically produce false alerts due to the inability to de-
termine the proper calling convention of a function. That said, we
did not notice any such alerts during our experiments.

Shimmer. Our system’s approach to patching relies on inspecting
the source of a device’s input, akin to a traditional network intru-
sion detection system. This gives it a great degree of flexibility, and
removes a lot of the need to understand the firmware’s internals.
However, this approach does make some kinds of patches easier
to express than others. Inspecting complex protocols, for example,
would require one to embed enough parsing in the patch to detect
the exploit, which could run into size constraints. We still believe
this is far preferable to reverse-engineering the entire firmware
image, however.

As with any software patch, once attackers know of its exis-
tence, there is some possibility the attacker will be able to evade a
naively-written patch, by, for example, crafting equivalent inputs
that evade filtration. We note that Shimmer’s C-based language
allows patch authors to write more robust patches, but again there
is a size trade-off to consider.

The Future of Security Retrofitting. As we discuss in Section 2,
many factors beyond the control of the analyst can influence the
patchability of a system. Interestingly, many of these mechanisms,
such as hardware roots-of-trust, software signature verification, and
the disabling of hardware code flashing mechanisms, are often ratio-
nalized as ways of increasing the security of the code against unau-
thorized modification. Indeed, the increasingly common hardware-
backed integrity verification methods do cleanly accomplish this
goal, while leaving some possibility of patching. For example, many
boot-time verification schemes in larger systems (e.g., PC Secure-
Boot and mobile phone bootloaders [40]) allow for the possibility
for the user to “unlock” this chain of trust, and run their own code,
at their own risk, if desired.

It is very important, however, to distinguish these techniques
from those that instead aim to implement intellectual property
protection, such as flash read-back protection [31, 46], which are
commonly found in some form in most embedded microcontrollers.
While these are also commonly touted as security measures, they
only achieve this goal when paired with one of the above verifica-
tion approaches. Unfortunately, for those vendors who indeed wish
to add intellectual property protection measures, these methods
are directly at odds with security retrofitting, as the firmware itself
cannot be easily obtained.

Unless something is done to strike a balance between security, IP
protection, and the end-user’s ability to repair their own devices, the
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number of unpatched, abandoned devices will continue to increase.
One solution that still allows for both kinds of protection is to im-
plement a means of relinquishing control of these protections when
the device’s period of support expires. In the case of IP protection,
this aligns with the fact that the vendor has no more commercial
interest in the product, and, therefore, has no need to obfuscate their
firmware further. These ideas seem a natural fit for recent and future
IoT security-related legislation [3, 5] being proposed worldwide, in-
tended tohelp informusers about the support and security policies of
their devices. Indeed, the European proposal for theCyber Resilience
Act [13] includes an objective for ensuring that manufacturers im-
prove the security of products throughout their whole life cycle.

6 RELATEDWORK

Many previous works have explored the area of patching binary
programs. Each has various pros, cons, limitations, and assumptions,
which must be compared to understand the current state of the field.

Wenzl et al. [54] dissect this area of research, and define four
common steps to binary rewriting: Parsing, Analysis, Transforma-
tion, and Code Generation. The work in this area varies in terms of
how they handle each of these steps.

The largest class of this work concerns reassemblable disassem-
bly [49–51], the notion of disassembling a binary completely into
standard assembly code for the architecture in question, adjusting
the code, and then simply assembling it again into the finished bi-
nary. This is a preferable technique for the analyst, as it makes the
Transformation and Code Generation step easy; assembly can be
easily patched manually or automatically via the human-readable
assembly code, and turned into a binary again with standard tools.

However, this work presents problems when it comes to tack-
ling the rewriting of firmware. First, reassembly assumes that the
firmware can be disassembled completely during the Parsing phase.
This includes the inter-related problems of distinguishing code and
data, finding function boundaries, distinguishing pointers from inte-
gers, and the resolution of indirect jumps. Unless we can re-host the
firmware into an emulated environment,we are leftwith performing
those tasks entirely statically. We also are dealing with monolithic
firmware images, and therefore do not have an explicit memory
map, symbols, or other metadata that can make these steps easier.
Therefore, we cannot guarantee the completeness of the disassem-
bly, control-flow recovery, or function identification. As an indicator
of this challenge, the samples in Section 4 have an average of 401 un-
resolved indirect jumps after angr’s resolution mechanisms (based
on [42]). Since monolithic firmware is not position independent
by nature, if we cannot locate every pointer, including those used
to access code and data, and adjust them during reassembly, the
firmware will not execute correctly.

On top of this, many aspects of these approaches are architecture-
specific, with most of works focusing only on Intel x86 binaries [10,
15, 49, 51], or requiring x86 hardware extensions [52]. Some caveats
related to ARM instruction set features that inhibit the Parsing and
Analysis phases were addressed by Kim et al. [27], but the approach
still inherits the aforementioned severe limitations of reassembly.

Another emerging class of work revolves around transferring
patches from one program to another. OSSPatch [17] works by lever-
aging source code of open-source projects used in the unpatched

target binary to retrofit patches from their upstream sources. A
similar work [24] aims to transfer the patched portions of compiled
binaries, without the source code. In our scenario, the patch has
simply not been developed, and will not be developed by the man-
ufacturer, therefore we cannot leverage either of these approaches.

Finally, while the above work has explored the Parsing, Analysis,
and Transformation aspects of binary rewriting, little thought has
thus far been given to the Code Generation portion. Unfortunately,
this is where the unique challenges of embedded systems, and partic-
ularly safety-hardened systems, begin to restrict our ability to patch.
First, all of the above work assumes that, when a patched binary is
created, the system will simply execute this binary instead of the
original. As we discuss in Section 2, most commercial embedded sys-
tems contain self-checks to preventmodification or corruption of the
firmware (e.g., CRCs and checksums), or intentional manipulation
by an attacker or user (e.g., digital signatures) whichmust be located,
and bypassed, for a patch to work. On top of this, it is also assumed
by reassembly-based approaches that we have the toolchain needed
to create a functioning binary image. In the case of a monolithic
firmware image, we do not know what format, if any, is present in
the firmware, or what tools may have been used to create it.

Additionally, we need to find space for our added code, either
within the image, or by appending it to the end. Since we often
obtain monolithic firmware in the form of full flash images (e.g.,
we cannot simply append data to the end), we must decide what
in this image can be removed, or what apparently-empty space
is available. This relates to the problem of binary debloating, the
known-undecidable problem of removing unnecessary content from
a program. Recent work has proposed solutions for debloating Dock-
erized applications [39], during program compilation [38], or using
shared library files [6]. Naturally, these kinds of approaches involve
extensive knowledge of the program, in the form of source code,
object code, or simply do not apply to the firmware domain.

Razor [37] uses a series of test-cases, along with the collection of
execution traces and heuristics to determine removable portions of
code. Unfortunately, as we mention in Section 2, this kind of trace
collection is not possible in the embedded systems domain, without
a successful re-hosting solution. Redini et al. [42] propose BinTrim-
mer, which aims to remove unnecessary code, without using any of
the above assumptions. It does so through improvements to indirect
jump resolution, which are used as the basis for angr’s own indirect
jump resolver, used heavily in this work. Unfortunately, its strict
dependence on the ability to resolve all indirect jumps makes this
approach inapplicable to our domain.

In summary, these numerous issues combine to rule out any Dy-
namic or Full Translation approaches (as defined byWenzl et al. [54]),
and wemust resort to the more simplisticDirect orMinimal Invasive
techniques. Even these (such as Detours [25]) require us to solve
at least the problems of code insertion, self-checks, and sources of
security-relevant data, which we focus on in this work.

A recent and related line of work has focused specifically on the
patching of firmware images [23, 26, 34]. While the authors share
our goal and make a convincing case for the need to patch firmware,
there are several important differences. Most techniques [23, 34]
assume that the location of the patch is known, and that space and
self-checks are not concerns. Instead, the focus of this prior work is
on hot-patching and ensuring that the patched code can be deployed
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at run-time. This is in contrast to Shimware, which modifies and in-
stalls a new version of the firmware, but which is explicitly designed
to help address the real-world challenges of proper code insertion.
While we did not explore HERA-style hot-patching in this work,
as some of the targets do not support its hardware requirements,
the idea of hot-patching and Shimware are orthogonal, and could
likely be easily combined. Dispatch [26] is closest to our work in the
sense that the authors attempt to automatically locate the location
(function) where the patch should be applied (similar in spirit to our
IOFinder). However, their approach relies on the implementations
details of Robotic Aerial Vehicle (RAV) firmware to function. It also
does not address the questions around the space required for a patch
nor the problem of (self-)check routines.

7 CONCLUSION

In this work, we explored the challenges and solutions to security
retrofitting of monolithic embedded firmware. We identified the
tasks of locating the attacker controlled IO, finding safe payload in-
jection locations, and mitigating self-check functions as candidates
for automation. To this end, we proposed three novel static-symbolic
analyses that locate these features in a firmware image automat-
ically, and significantly reduce the analyst effort. Our prototype
system, Shimware, combines these techniques with a tool that as-
sists analysts in injecting patch payload into the firmware without
the need of performing complex reverse engineering. We employed
the full system to address three safety and security-critical vulner-
abilities in off-the-shelf products from the engineering, healthcare,
and industrial automation sectors. Our results show the promise of
security retrofitting, even in the challenging context of monolithic
firmware, and we hope that future advances in securing embedded
firmware will continue to allow users and analysts alike to secure
their devices, when manufacturers may not.
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A APPENDIX

We implemented Shimware in Python using the angr[45] binary
analysis framework. This allowed us to easily implement both static
and dynamic symbolic analyses in the same framework. angr also
offers broad architecture support, and the flexibility to handle mono-
lithic firmware images.
Loading the Binary. In order to perform analyses on any mono-
lithic firmware image, we first have to obtain the base address, entry
point, and architecture of the binary. Doing this automatically is
a known open problem, but we leveraged an angr plugin that au-
tomates this process for many ARM-based firmware images [47],
including all of the binaries used in this work. This produces a rep-
resentation of the device’s memory with the loaded firmware, but
before any execution begins.
Initial Static Analyses. Once the binary is loaded into simulated
memory, we use angr’s built-in CFGFast analysis, which first uses
prologue scanning to locate possible functions within the firmware,
and computes a static control-flow graph starting from these func-
tions. It then attempts to recover the calling conventions of each
function, recover program variables (similar to [28]), and computes
cross-references to functions and data.

Fully-InitializedState.Alongwith the above initial processingpro-
vided by angr, we created a new analysis primitive, used by all the
subsequent analyses, which attempts to statically reconstruct the ex-
ecution state of the firmware, as if it had completed its initialization.
This becomes critical when firmware uses global variables, popu-
lated at boot-time, to hold pointers to its IO devices, or other data
needed for successful execution during any of our analyses. How-
ever, to avoid over-constraining the program during symbolic exe-
cution, this analysis specifically targets the initialization of pointers.

At a high level, this analysis tracks constant pointers within
the program, from where they are computed or loaded from the
firmware, to where they are stored to statically-known regions of
RAM. To do this, we start from the entry point of the program,
and perform a conventional constant propagation on each function,
following the topological order of the program’s callgraph. Any
value which is propagated into memory, which is also known to be
a constant pointer, is reflected in the fully-initialized state. For the
purposes of this analysis, we define a constant pointer as any integer
that could represent an address in the architecturally-defined RAM
or IO regions. These constant pointers are also propagated into
function calls; a function is only propagated after all of its callers,
and will be propagatedmultiple times, one for each set of arguments
used at a callsite. Any conflicting memory writes will result in an
unconstrained symbolic value being stored in the given location.

With the initialized state computed, we can then make use of
this data in the static and dynamic phases of our analyses. We can
now find memory locations that were initialized to hold pointers
to MMIO, and use these to find the otherwise-invisible IO func-
tions that use them. Similarly, we use the same technique to find
self-references for SelfCheckFinder.
Symbolic Execution. Our analyses use under-constrained sym-
bolic execution to examine a function’s behavior, by starting at each
function’s first instruction, and using the fully-initialized state. To
make this tractable on large binaries, we used a number of angr’s
Exploration Techniques to limit how much execution we perform.
We limited the number of basic blocks in any given path to 10,000,
the amount of time spent on a function to 5 minutes, as well as using
depth-first search and removal of dead-ended paths to reduce mem-
ory usage. For IOFinder, we also used the taint tracking and adaptive
inter-function level mechanism proposed in previous work [41], to
focus our analysis on relevant portions of code.
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