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Abstract—Despite its detection capabilities against previously
unseen threats, anomaly detection suffers from critical limita-
tions, which often prevent its deployment in real-world settings. In
fact, anomaly-based intrusion detection systems rely on compre-
hensive pre-established baselines for effectively identifying suspi-
cious activities. Unfortunately, prior research showed that these
baselines age and gradually lose their effectiveness over time,
especially in dynamic deployments such as microservices-based
environments, where the concept of “normality” is frequently
redefined due to shifting operational conditions. This scenario
reinforces the need for periodic retraining to uphold optimal
performance — a process that proves challenging, particularly
in the context of security applications.

We propose a novel, training-less approach to monitor-
ing microservices-based environments. Our system, REPLI-
CAWATCHER, observes the behavior of identical container in-
stances (i.e., replicas) and detects anomalies without requiring
prior training. Our key insight is that replicas, adopted for
fault tolerance or scalability reasons, execute analogous tasks
and exhibit similar behavioral patterns, which allow anomalous
containers to stand out as a notable deviation from their corre-
sponding replicas, thereby serving as a crucial indicator of secu-
rity threats. The results of our experimental evaluation show that
our approach is resilient against normality shifts and maintains its
effectiveness without the necessity for retraining. Besides, despite
not relying on a training phase, REPLICAWATCHER performs
comparably to state-of-the-art, training-based solutions, achieving
an average precision of 91.08% and recall of 98.35%.

I. INTRODUCTION

The landscape of software development has seen a sig-
nificant paradigm shift, with enterprises embracing the mi-
croservice approach for developing complex applications [8].
This approach’s ubiquity stems from its ability to break down
a complex application into dozens of distinct and scalable
services instead of a single monolithic stack, thus providing
a flexible software development process [31]. In this context,
container technology has emerged as a perfect companion to
microservices [44]. Indeed, platforms such as Docker [38] and
Kubernetes [30] offer a powerful infrastructure that simplifies
deployment and management of microservices. This is evi-
denced in a recent survey [9], which reported that 83% of
respondents use Kubernetes in production environments.

Nevertheless, with container adoption soaring, attackers are
shifting their direction to this technology, causing massive
impairment of business performance [36]. To account for
this, many enterprises concede that the shift security left [54]
approach, despite preventing security breaches from being
deployed, is not exhaustive. Zero-day attacks can still man-
ifest at runtime [2], allowing attackers to compromise critical
applications. Such threats mandate a shield-right security ap-
proach [52], which emphasizes continuous monitoring to detect
and alert security teams of suspicious activities.

The idea of monitoring containers for anomalies has been
explored in both industry and academia. Falco [53], a monitor-
ing tool with container support, stands out as a leading solution
in industry [54]. This tool enforces stringent security rules
at the kernel level, allowing for good coverage of suspicious
activities. In academia, various studies have been centered on
the analysis of system calls (syscalls) to detect anomalies.
One noteworthy approach [1] utilizes the frequency of syscalls
within a sliding window to define container behavior as n-
gram syscall sequences, and it then employs a mismatch-based
threshold to detect anomalies. Another work [33] leverages
machine learning techniques to model the frequency of syscalls
in short time-based sequences. In a different approach, a recent
work [14] combines machine learning and graph modeling
to analyze the context around various syscall properties (e.g.,
frequency, arguments) to unveil abnormal behavior.

However, despite their detection capabilities against previ-
ously unseen threats, all approaches that build upon anomaly-
based detection suffer from a critical limitation: the depen-
dence on a training baseline. Traditional anomaly-detection
assumes that such a baseline model provides an accurate,
steady, and comprehensive representation of normal behavior.
Unfortunately, this assumption does not hold in real-world set-
tings [21], especially in dynamic microservices-based environ-
ments. In fact, the evolving nature of microservices [54], often
in response to new requirements, features or vulnerabilities,
causes frequent drifts in the definition of “normal”. Failure
to identify and adapt to such drifts leads to an unmanageable
amount of false positives [21]. This calls for periodic retraining
to uphold performance, a process that is proved challenging
within security domains [37], [60], [63].

In contrast to existing solutions, we propose a novel
approach to container anomaly detection that does not require
a predefined training baseline. Instead, we base our solution
on the key idea of comparing replicas, i.e., identical instances
of a container replicated for scalability reasons. Our intuition
is that replicas behave similarly as they execute analogous
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tasks. On the contrary, when subject to an attack, replicas show
inconsistency in their behavior, enabling us to detect suspicious
activity in a training-less fashion.

While intuitively this approach shows the great advantage
of not relying on a predetermined baseline model, training-less
anomaly detection proves feasible only when it can effectively
manage 1) the inherent background noise produced by repli-
cas, while 2) guaranteeing a minimal processing overhead in
operational settings. We address these challenges, which make
training-less anomaly detection non-trivial.

Background noise. While replicas are designed to perform
the same function, they inevitably generate a certain level of
noise due to normal operational inconsistencies (e.g., vary-
ing user interactions, load fluctuations, etc). This poses a
significant challenge in the selection of decision features to
detect anomalies. Besides carrying strong and diverse security
semantics that assist in generic anomaly detection, the selected
features need to demonstrate resilience against the inherent
noisy patterns of replicas, mitigating the risk of false alerts.

Processing overhead. In a microservices-based setup that
involves replicas, we need to select features that not only show
effectiveness and resilience, but also promote computational
efficiency. The features should warrant that their extraction
and processing do not incur undue computational burdens, thus
balancing performance and resource utilization.

To handle these challenges, we develop REPLI-
CAWATCHER, a novel training-less approach to monitor
containerized clusters for anomalies. One good trait of
replicas lies in their execution of functionally identical
tasks, resulting in highly congruent behavioral patterns [41].
Capitalizing on this inherent property, we uncover anomalies
by comparing the behavior of replicas. On a high-level, we
first collect kernel events generated by replicas, a process
designed to impose minimal overhead. Following this, we
proceed to extract pertinent features from these events,
identifying those features that are immune against background
noise and adept at flagging various anomalies. We compare
these features across replicas employing a similarity-based
technique to identify dissimilar instances. Finally, we classify
replicas based on the degree of observed dissimilarity,
identifying suspicious activity.

In summary, we make the following contributions:

• We propose the concept of training-less anomaly
detection for identifying anomalies without requiring
an initial training and subsequent retraining(s).

• We present REPLICAWATCHER, a training-less
anomaly-based detection system specifically
designed to identify anomalies in microservice-
based environments.

• We implement and evaluate REPLICAWATCHER. Our
results show that our approach is resilient against
normality drifts without requiring any retraining and
maintaining a negligible runtime overhead. We also
show that our system performs comparably to state-of-
the-art training-based techniques, achieving an average
precision of 91.08% and recall of 98.35% on 13 attack
scenarios across two microservices-based platforms.
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Fig. 1: Unseen syscalls count at each cart update.

cart0.6.0
PROC TID >/< Syscall
grpc_h_p (308) > fcntl
grpc_h_p (317) < futex
grpc_h_p (317) > futex
grpc_h_p (315) < futex
grpc_h_p (315) > switch

cart0.7.0
PROC TID >/< Syscall
grpc_h_p (273) < fcntl
grpc_h_p (290) > futex
grpc_h_p (273) > getrlimit
grpc_h_p (290) < futex
grpc_h_p (273) < getrlimit
grpc_h_p (290) > futex
grpc_h_p (290) > switch

Fig. 2: Syscall normality shift between cart-0.6.0 and cart-0.7.0.

In the spirit of open science, we make our tool available
at https://github.com/utwente-scs/Replicawatcher.

II. MOTIVATION

This section presents a concrete example of a normality
drift scenario, a critical factor that underpins the essence of
our research. In microservices-based environments, changes
in the base OS images, dependency package updates, or
deployment of new functionalities are common events that
cause drifts in normality—e.g., Netflix makes hundreds of pro-
duction changes per day [61]. When considering syscall-based
detection systems, such updates might lead to the execution of
previously unseen syscalls, triggering false positives.

To demonstrate this potential drift, we conducted an em-
pirical study using Google Online Boutique (GOB) [19], a
microservices-based application that simulates an e-commerce
platform. It comprises of 11 different microservices, including
checkout, payment, cart, and others. These services work
together to provide users with the ability to browse items,
add them to a cart, and complete purchases. We deployed
the application in Google Kubernetes Engine (GKE) 1 and
monitored the cart microservice across its last ten versions
over the span of nine months. We executed each version for
three hours. During this time, we recorded all the syscalls that
were executed by a new version but not by the preceding one.

Figure 1 shows that almost each new version of the
cart microservice generates one previously unseen syscall,
possibly due to changes to the underlying base operating
system (OS) images, packages, or application code. Indeed,
during the microservice upgrade from cart:0.6.0 to cart:0.7.0,
the .NET SDK was updated from 7.0.201 to 7.0.302, and
GRPC_HEALTH_PROBE from 0.4.15 to 0.4.18. These updates
introduced the execution of the getrlimit syscall, as shown
in Figure 2. This syscall is responsible for obtaining the

1https://cloud.google.com/kubernetes-engine/
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resource limits of a given process or thread [35]. Although the
new version may employ getrlimit due to modifications
in system resource handling or the implementation of new
features, its previously unseen nature inadvertently triggers
false positives in existing container-based detection systems,
as we show in detail in Section VI. Our work fills this
gap: We develop a detection approach based on comparing
the runtime behavior of replicas, which typically run the
same and updated version of container images. Doing so,
our solution automatically adapts to the evolving nature of
microservices, ensuring its robustness and reliability over time,
while eliminating the need for training and retraining.

We stress that the example we discussed in this section is
based on a simple yet real-world application. We also note that
this is not just an isolated example: our experiments and case
studies, discussed at length in Section VI, show that different
dynamic factors affect the normal behavior of microservices
and that existing approaches are unable to deal with such
changes, leading to substantial performance degradation.

III.PRELIMINARY ASSESSMENT

Building a training-less anomaly-based IDS calls for two
key considerations: ( 1 ) We need to select features that cover
different aspects of container behavior and can generically
detect attacks. ( 2 ) We need to identify, among those features,
the ones that exhibit less noise among replicas in normal mode
to prevent raising false alarms. To this end, we conducted
a preliminary assessment. This process began with exploring
potential features, followed by selecting those most suitable
for our training-less detection approach.

A. Preliminary Setup

We deploy each microservice of GOB with four repli-
cas. To collect logs, we leverage the loadgenerator service
to automatically interact with the application under various
settings (i.e., traffic volume, waiting times, and input sizes) to
produce realistic workloads that reflect user activity. We use
Sysdig [49] with a customized Chisel [5] (i.e., a lua script
that extends Sysdig’s functionality) to collect kernel events at
four distinct time intervals, namely 5s, 10s, 30s, and 60s. For
each microservice, we generate a unique set of 1,000 logs per
interval. Each log serves as a record, encapsulating all events
(e.g., executed syscalls, accessed files, etc) performed by the
replicas within that specific interval. In total, we collect 44,000
logs, which approximates to 13 days of recording.

B. Feature Exploration

( 1 ) To effectively address the first point, we select a set of
features that includes both commonly-used and novel features
related to three fundamental elements of the operating system
(OS) kernel: syscalls, file descriptors, and processes. In fact,
these elements are critical for the execution of any malicious
task and capture artifacts left by attackers. Appendix E pro-
vides a detailed description of the studied features.

Syscalls. The primary way programs interact with the OS
kernel for tasks like accessing the disk, working with files,
establishing network connections, and managing processes is
via syscalls [16]. We focus on several syscall attributes to

monitor potential security threats, including the frequency of
executed and failed syscalls, executed syscall names and their
categories (e.g., network for socket, bind), and syscall
latency and delta time.

File Descriptors (FD). Unix abstracts several resources as
files, including I/O, pipes, signals, and sockets, and it assigns
non-negative integers as file descriptors when opened [24].
We leverage this to tap into network and filesystem activities,
observing the frequency of accessed files, distinct accessed
directories and filenames (focusing here on shorter file paths
limited to three subdirectories or fewer, and devoid of random
elements like cache strings), the buffer size for specific syscalls
(e.g., read, recvfrom), and client IP addresses and ports.

Processes. A container can run a diverse range of processes,
spanning from its primary application to essential supporting
operations and intricate system interactions. To obtain detailed
insights into the behavior of replicas, we monitor several
aspects: executed processes, commands, and their arguments,
executables, and current working directories.

C. Feature Engineering

( 2 ) To address the second consideration, we analyze the
behavior of replicas under normal conditions. Within each
interval, we employ two techniques to evaluate the dissim-
ilarity among features. For list-generating features, such as
distinct list of accessed directories, we first compute the
average Jaccard similarity of the lists, which are produced
by all replicas for a given feature fk, and then subtracting
it from 1. The average Jaccard similarity of n replicas is
computed by finding the mean of the Jaccard similarity across
all possible replicas pairings (Rifk

, Rjfk
), as illustrated in

Equation 1. The dissimilarity value spans from 0 to 1. A
zero value means absolute alignment, implying that all replicas
generate identical lists. Conversely, a value of 1 indicates total
discrepancy, suggesting the absence of any common elements
in the produced lists. For features that generate individual
values, such as the max latency, we use the standard deviation
to measure their dissimilarity. This is calculated as the square
root of the average of the squared differences between each
replica’s value Rifs

and the mean [22], as shown in Equation 2.
Given that the standard deviation is naturally higher for metrics
with large values, such as the frequency of syscalls, we
perform min-max normalization between replicas to scale the
values into a range between 0 and 1, allowing for a reliable
measurement.

Jaccavg =
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|Rifk
∩Rjfk

|
|Rifk

∪Rjfk
|

(1)

σ =

√√√√ 1

n− 1

n∑
i=1

(Rifs
− x̄)2 (2)

D. Feature Evaluation

We analyze and rank features based on their maximum
dissimilarity observed across the logs of each interval. Our
findings, shown in Table I, reveal that features such as syscall
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frequency, network IP addresses and ports, latency, delta
time, and buffer length exhibit substantial dissimilarity across
replicas. This can be attributed to factors such as varying
workloads, network conditions, and user behavior. Conversely,
all process-based features manifest little to no dissimilarity,
primarily due to their inherent association with the applications
or processes executed within replicas. As a result, they are less
susceptible to variability.

Additionally, we note that longer monitoring intervals re-
sult in enhanced similarity across replicas (Table I). This can be
attributed to three primary factors: the broadened perspective
provided by extended intervals, the potential synchronization
of environmental conditions over time, and the likelihood of
stabilized resource utilization and user behavior. Armed with
these observations, we opt for a 30-second monitoring interval
and features with maximum dissimilarity scores less than 0.2.
It is important to note that our preliminary assessment focuses
exclusively on the normal behavior of GOB microservices.
Nevertheless, our results, discussed in Section VI, indicate that
the selected features not only show immunity against normal
noise, but also possess sensitivity to a wide array of attacks,
making them applicable in diverse threat scenarios.

TABLE I: MAXIMUM DISSIMILARITY VALUES OF THE STUD-
IED FEATURES ACROSS REPLICAS. THE FEATURES WE SE-
LECT ARE HIGHLIGHTED IN BOLD.

Category Feature 5s 10s 30s 60s

Syscall frequency 0.533 0.553 0.524 0.549
frequency (failed) 0.557 0.577 0.528 0.577
type 0.501 0.331 0.131 0.102
category 0.227 0.058 0.021 0.018
max latency 0.552 0.556 0.508 0.546
max delta time 0.557 0.551 0.571 0.553

File Descriptor frequency 0.566 0.561 0.488 0.512
directory 1.000 0.410 0.025 0.022
filename 1.000 0.059 0.032 0.026
file operation 0.333 0.000 0.000 0.000
max buffer length 0.555 0.571 0.459 0.561
client ip 0.502 0.251 0.211 0.205
client port 1.000 1.000 1.000 1.000

Process proc 0.333 0.166 0.107 0.107
cmdline 0.333 0.166 0.107 0.107
cwd 0.000 0.000 0.000 0.000
executable 0.333 0.166 0.000 0.000
args 0.333 0.166 0.000 0.000

IV.THREAT MODEL

We consider a Kubernetes cluster with a set of deploy-
ments 2, each running a heterogeneous set of replicas. We
assume that these replicas execute specific tasks, adhering to
the principle of microservice design, where each service is
responsible for a specific area of concern. We further consider
that all replicas are configured to run the same version of
the code and that any updates are rolled out to all replicas
simultaneously (e.g., through Deployment Controllers). This a
practical standard in microservices-based environments, where
replicas are built from a common configuration repository
(e.g., Dockerfile). We also assume that all replicas consistently
receive incoming requests, representing active user interac-
tions. This aligns with the scenario of high-traffic platforms

2https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

(e.g., Netflix [56], eBay [43]), where each replica within
a microservice is engaged in continual user interactions. In
fact, replicas are meant for scalability. An idle replica is
an unnecessary resource that orchestrators (e.g, Kubernetes)
automatically shut down.

We focus on remote network-triggered attacks where
an adversary exploits a vulnerability in a public-facing
microservice, delivering malicious payloads via TCP/UDP.
Specifically, we focus on software-level, remote control
flow hijacking attacks. Our scope consists of scenar-
ios where an attacker targets replica(s) to access sensi-
tive data (e.g., authentication bypass, directory
traversal), compromise the filesystem’s integrity (e.g.,
file inclusion), or execute unauthorized code/com-
mands (e.g., command injection). We assume that such
actions deviate the behavior of replica(s) compared to their
counterparts. We also assume that attackers cannot initiate an
identical attack on all replicas, simultaneously. While such
an attack is theoretically possible, its practical execution is
challenging and requires an attacker to have full knowledge of
the target system. Furthermore, such a massive attack would
unavoidably leave traces that approaches orthogonal to ours
can spot, e.g., via network traffic. Nonetheless, we further
discuss this scenario, as well as potential methods to address
it, in-depth in Section VIII. Besides, we do not consider
attacks that bypass or remain inconspicuous to the syscall
interface, as well as side-channels, hardware-related attacks
(e.g., spectre), resource exhaustion, network flooding, remote
passive fingerprinting, spoofing attacks, and attacks that require
physical or internal access to the monitored Kubernetes cluster.

Finally, our system is an anomaly-based IDS, focusing on
monitoring replicas for anomalies without prior training. Our
solution leverages Sysdig [49] as a privileged daemonset 3 to
cover all worker nodes within a Kubernetes cluster. Despite
the possibility of attackers tampering with Sysdig to conceal
their activities, they would first need to escape the container
namespace and elevate privileges on the underlying host OS
to do so. While container escape is an important subject, it is
out of scope for this work. Besides, existing tamper-evident
monitoring approaches [42] alleviate this assumption.

V. APPROACH

We propose REPLICAWATCHER, a training-less solution
to monitor containers for anomalous behavior. We base our
approach on the idea that replicas execute analogous tasks,
thus normally manifesting comparable behavioral patterns. On
the contrary, replicas manifest inconsistent behavior when they
are targeted by attacks. Our focus centers on analyzing and
comparing such patterns to spot potentially malicious activity.

Figure 3 depicts our system design. REPLICAWATCHER
consists of three phases: event chunking, event encoding, and
anomaly detection. In event chunking ( A ), we process the
continuous stream of events from all running replicas into short
monitoring intervals, referred to as snapshots. These snapshots
allow for an efficient comparison of replicas within particular
timeframes, thus facilitating the timely detection of anomalous
patterns. In event encoding ( B ), we construct a feature vector
from each replica’s events, capturing the degree of difference

3https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
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Fig. 3: REPLICAWATCHER Overview. (A) We split the continuous flow of kernel events into short monitoring intervals, defined as snapshots.
(B) Within each snapshot, we generate a vector for every replica, encapsulating its relative dissimilarity in comparison to its counterparts.
Then, (C) we input these vectors into a detection framework that, through their distance from the normality region, classifies snapshots.

that each replica exhibits when compared to the others. In
anomaly detection ( C ), we feed these vectors to a detection
scheme, which evaluates each vector’s deviation from the ideal
state, i.e., where all replicas are in complete alignment. If any
replica exhibits a marked deviation, we trigger an alert, and the
corresponding snapshot is accordingly labeled as anomalous.

Note that we compare together replicas related to the same
microservice. Thus, in practice, we apply our approach to
multiple sets of replicas, e.g., one set of replicas for the login
service, one set of replicas for the user profile service, etc.

A. Event Chunking

We configure Sysdig [49] with a customized Chisel [5] to
capture granular interactions between replicas and their under-
lying OS kernel. This involves kernel events associated with
the filesystem (e.g., accessed files), processes (e.g., executed
commands), as well as syscalls (e.g., executed syscalls). The
first step of our approach is to split the ongoing flow of kernel
events into sequential snapshots, with each describing the
activities of replicas for a designated time interval τsnapshot.
In the determination of τsnapshot, we consider the trade-off
between performance and attack lead time (i.e., elapsed time
between the detection of an attack and its completion). A
shorter interval affords greater attack lead time and enables
prompt response to security incidents, however, it also in-
creases the risk of false alarms triggered by inconsistencies
among replicas. Conversely, a longer interval reduces the
number of false alarms through a more robust understanding
of replicas, yet at the cost of sacrificing some attack lead time.
Therefore, following our preliminary assessment (Table I),
we experimentally set the snapshot interval τsnapshot to 30
seconds, which provides actionable insights about replicas
while still enabling timely detection of anomalies.

B. Events Encoding

At this stage, we first extract key features from kernel
events of each replica. We select these features based on our
early assessment (Section III). Our primary aim is to compare

behavioral patterns of replicas to identify those replicas that
exhibit a considerable degree of dissimilarity, indicating suspi-
cious activity. To this end, we represent each replica by a vector
of dissimilarity scores, each score corresponds to a distinct
feature. Our features, shown in Table I (highlighted in bold),
are inherently list-based (i.e., syscalls). For a given replica Ri

and a particular feature fk, we leverage the Jaccard similarity
technique to calculate the dissimilarity score DSfk(Ri), as
shown in Equation 3. Specifically, we subtract the average Jac-
card similarity between feature fk in Ri and the corresponding
feature in other replicas from 1. A high dissimilarity score
indicates greater uniqueness in the elements encompassed by
the feature, implying a higher likelihood of the replica being
anomalous. Conversely, a low dissimilarity score suggests that
the elements within the feature are more commonly observed
across other replicas, lowering the likelihood of the replica
being anomalous.

DSfk(Ri) = 1− 1

n− 1

n∑
j=1 j ̸=i

|Rifk
∩Rjfk

|
|Rifk

∪Rjfk
|

(3)

By applying this process to each feature, we generate a
dissimilarity score vector for every replica, denoted as vi =
[DSf1(Ri), DSf2(Ri), ..., DSfk(Ri)]. This vector serves as a
concise and meaningful representation of a replica’s degree of
alignment with its counterparts, and can be used as input to
our decision engine to detect anomalies.

C. Anomaly Detection

The underlying premise of our detection framework is that
replicas, when operating normally, display minor behavioral
differences. As a result, we expect their dissimilarity vectors
to converge towards the origin of the vector space, represented
by [0, 0, .., 0, 0]. The origin serves as a reliable normality
region. Specifically, replicas residing near the origin suggest
alignment in behavior, while those deviating indicate potential
misalignment and, thus, abnormal behavior.
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TABLE II: ATTACK SCENARIOS. (*) DENOTES GOOGLE ON-
LINE BOUTIQUE (GOB) SCENARIOS.

Threat Impact CVE/CWE Microservice

Authentication Bypass CWE-89 LOGIN
CWE-307 LOGIN

Information Disclosure CVE-2019-5418 CHECKOUT
CVE-2018-3760 CHECKOUT
CVE-2017-14849 * PAYMENT *

Remote Code Execution CVE-2017-12636 PRODUCTDB
CVE-2022-24706 PRODUCTDB
File Inclusion USER PROFILE
CWE-502 * RECOMMENDATION *

Command Injection CWE-434 USER PROFILE
CVE-2012-1823 LOGIN
CVE-2018-19518 SIGNUP
CVE-2014-6271 CART
CWE-78 * SHIPPING *

Privilege Escalation CVE-2017-12635 PRODUCTDB

Leveraging this understanding, we calculate the Euclidean
distance [32] between each replica’s dissimilarity vector and
the origin. This distance plays a critical role in controlling the
trade-off between the detection and false alarm rate. We eval-
uate a vector’s distance at multiple threshold values, ranging
from 0.1 to 1 with a 0.1 increment. If the distance exceeds
the employed threshold, we label the snapshot as anomalous.
Intuitively, a lower threshold can improve the detection rate,
but may also increase false alarms. We delve into this trade-off
through experiments presented in Section VI.

VI. EVALUATION

We implemented REPLICAWATCHER in Python [57] and
evaluated its performance against various attack scenarios.
First, we evaluated the resilience of REPLICAWATCHER
against normality drifts induced by image updates. Addi-
tionally, we compared our approach against state-of-the-art,
training-based container HIDSes [1], [14], [33], both in terms
of detection capabilities and resilience against normality drifts.
Finally, we delved into how our approach sustains its perfor-
mance at scale and retains minimal runtime overhead.

A. Dataset & Experimental Setup

Evaluation dataset. We developed an e-commerce application
with seven microservices, such as checkout and cart, mirror-
ing real-world platforms. We used different technologies for
each service, showcasing the tech diversity in microservices-
based setups. We intentionally embedded vulnerabilities from
common software libraries, presenting vectors for container
attacks. Furthermore, our evaluation also includes the GOB e-
commerce platform, where we injected three vulnerabilities
covering three attack scenarios, each targeting a different
microservice and leading to different threat impacts. Table II
outlines attack scenarios across our ”homebrew” and GOB
platforms. For more details, see Appendices C and D.

Experimental setup. We deployed the target applications
with replicas on a two-node GKE cluster. Each node is an
e2-standard-4 (4vCPU, 16GB memory) machine with ubuntu
and containerd. Our experiment involves normal and attack
modes and varies the replicas per microservice from two

TABLE III: EVALUATION DATASET STRUCTURE.

No. replicas

Snapshots 2 3 4 5 6

Normal 200 200 200 200 200
Attack 50 50 50 50 50

to six. In the normal mode, 30 to 50 users engage with
the application, exhibiting ”benign” usage patterns. In the
attack mode, alongside regular users, a distinct user acts as
an attacker, exploiting vulnerabilities or misconfigurations to
compromise replica(s) using malicious payloads.

We use Sysdig [49] and a custom chisel [5] to capture
kernel events of replicas. For each vulnerable microservice,
we collect 1,000 normal and 250 attack snapshots split evenly
across five settings with varying replica counts, detailed in
Table III. A snapshot captures the behavior of replicas for a
duration of 30 seconds. In total, our dataset has 15,000 normal
and 3,750 attack snapshots, equating to six days of monitoring.

B. Existing works.

In our experiments, we compared REPLICAWATCHER with
existing, training-based detection approaches. Here, we briefly
describe them to provide a better understanding of their
techniques, and, thus, of our results.

STIDE-BoSC [1]. The authors blend STIDE [59] and Bag-
of-words [64] techniques to model syscall traces. In training,
they build a database of bag of syscalls vectors (i.e., BoSCs) by
recording each syscall within a window of size ten. In testing,
they compare the encountered BoSCs against the training
database. If the number of mismatched BoSCs within a certain
interval surpasses a pre-set threshold, the authors classify the
interval as anomalous.

CHIDS [14]. Using a graph-based structure, the authors gener-
ate vectors that encapsulate the contextual influence of unseen
syscalls and arguments, along with their frequency in short
sequences. In training, they train the auto-encoder network
with normal vectors to reduce the reconstruction errors. In
testing, the authors classify a sequence as anomalous if its
reconstruction error surpasses the pre-set threshold.

CDL [33]. The authors transform syscall sequences into
frequency-based vectors. Then, they train an autoencoder net-
work with normal vectors to reduce the reconstruction errors.
In testing, the authors classify a sequence as anomalous if its
reconstruction error exceeds the predetermined threshold.

C. Robustness against Normality Drifts

We evaluated how robust REPLICAWATCHER is against
environmental changes and normality drifts. We delved into
this aspect by evaluating three update scenarios, which update
the base OS image, a dependency package, and the application
code, respectively. We monitored the performance of REPLI-
CAWATCHER across these updates to assess its resilience to
environmental changes, and compared its performances with
the aforementioned existing tools.
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Base OS image update. We update the Cart microservice
from a version incorporating php:8.1.18-apache-buster to an-
other with php:8.1.18-apache-bullseye. As shown in Figure 4,
this update introduces one previously unseen syscall, namely
clock_nanosleep. The introduction of this syscall is
caused by a change in glibc [18] from 2.28 to 2.31. As
shown in Figure 4, the clock_nanosleep syscall seems
to replace nanosleep in the Bullseye-based image, offering
high-resolution sleep functionality with a selectable clock [34].

php:8.1.18-apache-buster
PROC TID >/< Syscall
apache2 (246) < getpid
apache2 (246) > nanosleep
apache2 (246) > switch
apache2 (246) < nanosleep
apache2 (246) > getcwd

php:8.1.18-apache-bullseye
PROC TID >/< Syscall
apache2 (997) < getpid
apache2 (997) > clock_nanosleep
apache2 (997) > switch
apache2 (997) < clock_nanosleep
apache2 (997) > getcwd

Fig. 4: Comparison of syscalls between php-apache versions.

Dependency package update. We update the Checkout mi-
croservice, specifically upgrading the Puma4 package from
version 3.2 to 5.5. This upgrade introduces some previously
unseen syscalls. As shown in Figure 5, the select syscall
used in the older version is now replaced by a trio of
syscalls, namely epoll_wait, epoll_ctl, and ppoll.
Here, epoll_wait waits for events on the epoll instances,
epoll_ctl adds, modifies, or removes file descriptors from
the interest list of the epoll instance, and ppoll monitors
multiple file descriptors for I/O readiness. These new syscalls
enhance Puma’s ability to manage multiple file descriptors,
thus optimizing network I/O handling.

------- puma 3.11 ------
PROC TID >/< Syscall
puma (198) < getpid
puma (198) < select
puma (198) < switch
puma (198) > recvfrom
puma (198) < recvfrom

------- puma 5.5 --------
PROC TID >/< Syscall
puma (213) < getpid
puma (213) < ppoll
puma (213) < switch
puma (213) < epoll_wait
puma (213) < epoll_ctl
puma (213) < epoll_ctl
puma (213) < epoll_wait
puma (213) < switch
puma (213) < ppoll
puma (213) > recvfrom
puma (213) < recvfrom

Fig. 5: Comparison of syscalls between Puma versions.

Application code update. We update the Signup microservice,
specifically adding a new function that validates the input
address based on the Google’s Geocoding API 5. As shown
in Figure 6, the new change in the code incorporates an HTTP
network request to this API, which is used to verify the au-
thenticity of the provided address. This modification introduce
some previously unseen syscalls during the application’s exe-
cution. These syscalls are associated with network operations.
Specifically, the bind syscall assigns a local protocol address
to a socket, preparing it for the outgoing connection to the
API. Moreover, the recvmsg syscall is employed to receive
incoming data (i.e., API validation response) from the socket.

Post-update performance analysis. Figure 7 shows the per-
formance of all the evaluated approaches before and after

4https://puma.io/
5https://developers.google.com/maps/documentation/geocoding/overview

----- insertData.php -----
<?php
...
$_addr = urlencode($addr);
$url= $API . $_addr . $KEY;
$r=file_get_contents($url);
...
?>

-------- signup --------
PROC TID >/< Syscall
php-cgi (64) > bind
php-cgi (63) < socket
php-cgi (63) < bind
php-cgi (64) < getsockname
php-cgi (64) < sendto
php-cgi (64) > recvmsg
php-cgi (64) < recvmsg
php-cgi (64) < close

Fig. 6: Syscalls of the new Signup version.

the update, for each of the three scenarios. We note a
significant increase in false positives for both STIDE-BoSC
and CHIDS after implementing the three updates. This high
sensitivity towards updates can be attributed to the emergence
of previously unseen syscalls. Pre-update versions generated a
different array of syscalls, thereby shaping the trained model’s
perception of normal behavior. As a result, these syscalls lead
both CHIDS and STIDE-BoSC to encounter challenges in
accurately classifying their occurrence. More specifically, these
calls trigger a high unseen syscalls influence (USI) in the
feature vector of CHIDS and also cause BoSC mismatches
for the STIDE-BoSC work. Consequently, this leads to a
high number of false positives. Post-updates, CDL performs
better and the increase of false positives is less significant.
As CDL operates on a frequency-based methodology, it only
flags deviations in syscall frequency rather than the syscalls
themselves. This mechanism allows CDL to maintain a low
false positive rate, even after updates. However, this approach
also renders CDL incapable of detecting attacks, as it is
primarily designed to track frequencies rather than identify
anomalous or malicious syscalls. Therefore, while it performs
well in terms of limiting false positives, its ability to provide
generic detection is fundamentally compromised.

In contrast, REPLICAWATCHER operates on a distinctly
different principle. Our underlying approach works by com-
paring replicas that run similar tasks. In microservices-based
environments, any update is automatically propagated to all
replicas, preserving the consistency of their behavior—in prac-
tice, replicas are usually executed from the same Dockerfile.
As a result, REPLICAWATCHER maintains a nearly steady
false positive rate, almost unaffected by system updates, and
it upholds a high detection rate, making it adept at detecting
attacks while handling the dynamic nature of microservices.

More fundamentally, our experiments show how training-
based approaches suffer from performance degradation when
the monitored environment changes. Even worse, while our
scenarios focused on a single update deployment, production
environment are subject to various and constant changes,
further emphasising the need for an approach like ours.

D. Detection Capabilities

Figure 8 shows the performance of our approach against
multiple attack scenarios spanning different microservice-
based applications. For specific threats, REPLICAWATCHER
yields high AUC scores of 0.9771, 0.9883, and 0.9970 for
information disclosure, remote privilege escalation, and code
execution scenarios, respectively. Delving deeper into the
application categories, in the GOB scenarios, our system yields
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Fig. 7: Assessment of Post-Update Performance. (-U) indicates post-update values.

an average AUC of 0.9960, and for our homebrew scenarios,
it produces an average AUC of 0.9827. This consistent perfor-
mance demonstrates the robust generalizability of our features
across different microservices-based applications.

Nonetheless, in the context of command injection, particu-
larly pertaining to the CVE-2012-1823 scenario, our approach
exhibits a slightly reduced AUC score of 0.9479. This is
attributable to the incidence of a few false positives, stemming
from the inherent noise of replicas in normal operation. In
addition to the AUC scores, we extend our evaluation by
considering metrics such as precision, recall, etc. To maintain
uniformity in evaluation, we empirically select a detection
threshold of ϵ = 0.3. While this threshold may not be
optimal for each individual scenario, it guarantees consistently
favorable performance overall.

As illustrated in Table IV, our approach achieves an av-
erage precision of 0.9248 and recall of 0.9813. For precision,
we observe lower scores for PHP-LFI, CWE-434, and CVE-
2014-6271. Here, the uniform threshold struggles to differ-
entiate between attacks and the inherent noise from regular
microservice usage. However, the high AUC scores in such
scenarios, suggest that by adopting higher thresholds, our ap-
proach can notably improve performance. For recall, the lower
score observed for CVE-2018-3760 underscores the challenge
our solution face in reliably detecting path traversal attacks.
Sometimes, these attacks introduce only subtle variance among
replicas, slipping past the threshold. However, the high AUC
score achieved in such scenarios suggests that, given the
microservice’s inherently low noise level, our solution might
be more adept at spotting such attacks with a lower threshold.

In short, while REPLICAWATCHER has limitations with
authentication bypass attacks (see section VIII), it performs
optimally across various scenarios of different microservices-
based applications. It is noteworthy that we use the uniform
threshold to evaluate our solution under the most challenging
and generalized settings. Therefore, adjusting the threshold for
specific use cases can further enhance its effectiveness.

E. Comparison with Existing Container HIDSes

We compared REPLICAWATCHER with STIDE-BoSC,
CHIDS, and CDL [33] also in terms of detection capabilities.
We evaluated these works on a dataset of 1000 normal and
100 attack traces per scenario, each lasting 30 seconds. We
performed a 4-fold cross validation using 25:75 of normal
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Fig. 8: AUC scores among different attack scenarios.

traces, along with 100 attack traces as test data. Moreover,
in adherence to the original papers’ methodology, we apply
the same sequence length and detection threshold in our
evaluation. As per this, a trace is labeled anomalous if any
of its constituent sequences are classified as such.

STIDE-BoSC. This work achieves an average recall exceeding
98% (Table IV), yet, it also experiences a substantial false
positive rate of approximately 60%. This stems from unseen
BoSCs emerging during regular activities, even when com-
posed of previously seen syscalls, highlighting the challenge
of modeling behavior with short sequences.

CHIDS. This work, leveraging diverse syscall properties
to construct a baseline for containers, outperforms REPLI-
CAWATCHER, CDL, and STIDE-BoSC across all attack sce-
narios. This superiority is visible in Table IV, with CHIDS
achieving over 96% recall and 97% precision in all scenarios.

CDL. This work, relying on frequency analysis, is only able to
detect attacks that result in unusual syscall frequencies. As re-
flected by the low recall (below 50%) across various scenarios
in Table IV, this method falls short in detecting low-frequency
attacks, consequently impacting its overall effectiveness.

REPLICAWATCHER outperforms both CDL and STIDE-
BoSC across various scenarios, attributed to the use of features
with diverse security semantics. Nonetheless, CHIDS slightly
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TABLE IV: PERFORMANCE OF OUR APPROACH AND EXISTING WORKS. (*) INDICATES THE THRESHOLD SET BY THE AUTHORS.

ReplicaWatcher (ϵ = 0.3) STIDE-BoSC (mismatch = 10)
Scenario Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

CVE-2018-3760 0.9551 0.8720 0.9116 0.9155 0.5729 0.9803 0.7232 0.6248
CVE-2019-19518 0.9595 0.9720 0.9657 0.9655 0.5298 0.8235 0.6448 0.5463
CVE-2017-14849 0.9980 1.0000 0.9990 0.9990 0.5098 1.000 0.6753 0.5192

CVE-2022-24706 0.9881 1.0000 0.9940 0.9940 0.7016 0.9903 0.8214 0.7846
CVE-2017-12636 0.9881 0.9960 0.9920 0.9920 0.6995 0.9803 0.8165 0.7796
PHP-LFI 0.8000 0.9880 0.8841 0.8705 0.6340 0.9803 0.7701 0.7073
CWE-502 0.9990 1.0000 0.9995 0.9995 0.5048 0.9803 0.6664 0.5094

CWE-434 0.8012 0.9960 0.8881 0.8745 0.6340 0.8627 0.7426 0.7011
CVE-2012-1823 0.9029 0.9680 0.9343 0.9319 0.5984 0.9803 0.7432 0.6612
CVE-2018-19518 0.9132 1.0000 0.9546 0.9525 0.6519 0.8627 0.7426 0.7011
CVE-2014-6271 0.7604 1.0000 0.8639 0.8425 0.5482 0.9803 0.7032 0.5863
CWE-78 0.9699 1.0000 0.9847 0.9845 0.4983 0.9804 0.6608 0.4967

CVE-2017-12635 0.9877 0.9640 0.9757 0.9760 0.6952 0.9607 0.8067 0.7698

CHIDS (γ = 1.4) CDL (99.99th of RE )
Scenario Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

CVE-2018-3760 1.0000 1.0000 1.0000 1.0000 0.9090 0.1000 0.1801 0.5450
CVE-2019-19518 1.0000 1.0000 1.0000 1.0000 0.9564 0.2200 0.3577 0.6050
CVE-2017-14849 1.0000 1.0000 1.0000 1.0000 0.6250 0.2000 0.3030 0.5400

CVE-2022-24706 1.0000 1.0000 1.0000 1.0000 0.9603 0.9700 0.9651 0.9650
CVE-2017-12636 1.0000 0.9800 0.9898 0.9900 0.9615 1.000 0.9803 0.9800
PHP-LFI 0.9740 1.0000 0.9868 0.9866 0.9374 1.000 0.9677 0.9666
CWE-502 1.0000 1.0000 1.0000 1.0000 0.4090 0.2400 0.3025 0.4466

CWE-434 0.9729 0.9600 0.9664 0.9666 0.4736 0.0600 0.1065 0.4966
CVE-2012-1823 0.9795 0.9601 0.9696 0.9701 0.8371 0.4800 0.6101 0.6933
CVE-2018-19518 1.0000 0.9800 0.9898 0.9900 0.9638 0.7200 0.8242 0.8464
CVE-2014-6271 0.9740 1.0000 0.9868 0.9867 0.4838 0.1000 0.1657 0.4966
CWE-78 1.0000 1.0000 1.0000 1.0000 0.1999 0.0200 0.0363 0.4700

CVE-2017-12635 1.0000 0.9800 0.9898 0.9900 0.7777 0.1400 0.2372 0.5500

outperforms our tool by establishing a baseline from various
aspects of container behavior, significantly reducing noise and
facilitating a more efficient anomaly detection. Importantly,
REPLICAWATCHER stands out for its ability to handle updates
effectively, a capability lacking in many other approaches.

Impact of the number of replicas. We evaluate the per-
formance of our solution in scenarios characterized by a
varying number of replicas, specifically within the range of
two to six. Figure 9 illustrates the correlation between the
number of replicas and the respective average true positive
rate (TPR) and false positive rate (FPR) across all attack
scenarios. In evaluating the FPR, we find it relatively lower
when the replica count stands at two. This can be due to
a higher probability of user requests reaching all replicas,
which induces a more evenly spread user behavior pattern.
Conversely, we notice a moderate fluctuation in the FPR as
the number of replicas increases. This can be largely attributed
to the difficulty in discerning consistent behavioral patterns
across multiple replicas. In fact, certain replicas may serve a
distinct subset of users, thereby introducing noise and, thus,
false positives. When examining the TPR, we observe that,
on average, it remains higher, regardless of the number of
replicas. Although some fluctuations are evident, they do not
directly correlate with the number of replicas and could be
ascribed to a variety of factors, including the inherent noise
within the environment at a given moment. Overall, even with
minor performance fluctuations, REPLICAWATCHER maintains
reliable performance regardless of the number of replicas.
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Fig. 9: Performance of REPLICAWATCHER vs changes in the
number of replicas. Evaluated at the threshold of (ϵ = 0.3).

F. Ablation Study

To assess the impact of each feature category on our
solution’s performance, we conduct an ablation study, omitting
one feature category at a time. We used ROC curves and
AUC scores for evaluation. Figure 10 displays average ROC
curves for each attack type based on threat impact, covering
information disclosure (ID), command injection (CI), remote
code execution (RCE), and remote privilege escalation (RPE).

Without FD-based features. We observe a decrease in the
detection of ID attacks, with an AUC score of 0.5735. As these
attacks involve unauthorized file/directory access, they do not
execute distinct processes or syscalls. Thus, both normal and
anomalous replicas often appear similar, making our approach
generate a random classifier (AUC ≈ 0.5). We also see a drop
in the detection of RPE attacks. These attacks, marked by
unexpected file interactions and unauthorized changes, leave
observables beyond just FD-based prints, leading to a moderate
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Fig. 10: Ablation Study. Impact of feature category removal on AUC scores across attack scenarios.

impact. In short, we find that FD-based features are crucial for
a comprehensive threat detection.

Without process-based features. Omitting process-based fea-
tures leads to a drop in CI attack detection, underscoring the
significance of commands, executables, and arguments as CI
indicators. While CI detection suffers, other features detect
diverse scenarios. Still, integrating process-based features is
pivotal for comprehensive detection with REPLICAWATCHER.

Without syscall-based features. Upon the exclusion of
syscall-based features, the remaining features still achieve
strong performance across all attack scnearios. However, in-
corporating syscalls boosts performance for RCE and RPE
scenarios, while slightly reducing it for RCE and ID. Despite
some scenarios not benefiting, certain attacks like memory
corruptions are primarily detected through syscalls. Therefore,
for thorough detection, we recommend including syscall-based
features, as also employed by prior research [1], [14], [33].

G. Runtime Performance & Scalability

The time complexity of REPLICAWATCHER depends on the
number of pods within a node. While REPLICAWATCHER can
be deployed on a third-party server, we favored implementing
it as an HIDS on the worker nodes. This direct integration
avoids potential lag from external server communications,
offering a reliable execution time assessment. Note that the
latency introduced by having replicas on multiple nodes does
not affect the detection performances of our tool.

We spun all replicas of a microservice on the same worker
node. Our evaluation covered the full pipeline, from chisel’s
execution and log generation, to our solution’s snapshot group-
ing, encoding, and classification. We segmented our analysis
into five phases, beginning with eight microservices with two
replicas each, and incrementally increasing to six replicas, to-
taling 48 pods. This number aligns with the median container-
per-host density observed in real-world settings [54].

Figure 11 shows that REPLICAWATCHER’s execution time
grows sublinearly with increasing replicas. However, even with
six replicas for each of the eight microservices (48 pods
in total), our solution processes and classifies in under 2.25
seconds, making it feasible to run in practice. This stems
from two factors: 1) chisel filters events upon receipt, ensuring
quick logging and reduced latency, and 2) our selected feature
set allows for fast processing at scale and supports generic
anomaly detection.
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Fig. 11: Average execution time of REPLICAWATCHER against
different number of pods. S = services; R = replicas.

H. Robustness against Evasion

We assessed the robustness of REPLICAWATCHER against
evasion attempts by performing a set of stealthy attacks that
spread malicious activity over time with the goal of staying
under the detection threshold in each snapshot. We then grad-
ually increased the amount/severity of the malicious activity
to evaluate the detection capabilities of our system.

Command Injection (CWE-78) scenario. We deployed four
replicas of the shipping microservice in GOB and designed our
command injection (CWE-78) attack in a Kill Chain [62]
fashion, with four phases: ( A ) reconnaissance, ( B ) prepa-
ration, ( C ) exfiltration, and ( D ) cleanup. We used eight
commands (c = 8) for each phase—choosing a set of stealthy
commands that reduce their footprint on the system (see
Appendix B for more details). In each phase, we adjusted
the attack intensity by incrementally executing one to six
commands per snapshot. When using multiple commands,
we appended them with a separator into a single command,
ensuring responses from the same replica and mitigating load-
balancing distribution noise.

Path Traversal (CVE-2017-14849) scenario. We deployed
four replicas of the payment microservice in GOB. Using eight
requests, we conducted path traversal to access unauthorized
files. We adjusted the attack intensity by incrementally execut-
ing one to six requests per snapshot.

Snapshot collection. In both scenarios, we collected three
snapshots for each combination

(
c
n

)
, yielding 3,690 snapshots

in total. In command injection, n represents the number of
distinct executed commands in a snapshot, while in directory
traversal, it denotes the number of distinct curl requests.
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Performance analysis. Table V presents our solution’s per-
formance against the two classes of attacks. For command
injection, in A , REPLICAWATCHER missed five of the eight
commands when executing a single command per snapshot.
This can be attributed to the use of shell built-in commands,
avoiding noisy external commands. Yet, with increased com-
mand volume per snapshot, the detection rate rises. In B ,
involving file creation, aggregation, and encoding, REPLI-
CAWATCHER detects six of eight single commands. When
executing multiple commands, REPLICAWATCHER correctly
detected all snapshots. In C , entailing data transfer to remote
destinations, our solution yields a high detection rate in all
settings. This is because exfiltration typically results in execut-
ing new processes and syscalls, producing a heavy footprint
on the system, which our features capture. Note, however,
that this does not mean that our tool always holds a perfect
detection rate in all exfiltration scenarios. Our results only hold
for our attack implementation (using wget and curl). For
more stealthy exfiltration techniques, we have to realistically
assume that our approach can be evaded. In D , the attacker
evades our solution with three singular commands to erase files
or clear history. However, as command volume rises, so does
the detection rate. Overall, it is possible for attackers to evade
detection while injecting commands, however, such evasion is
bound to performing limited malicious activity.

For path traversal, our solution missed seven of eight
singular requests. These undetected requests predominantly
targeted files within the /etc directory (e.g., passwd).
The payment microservice, as part of its operation, accesses
/etc/localtime to verify credit card expiration dates. Due
to this benign interaction with the /etc directory, accessing
an unusual file therein caused only subtle deviations, thus cir-
cumventing detection. However, similar to command injection,
our detection rate rises with increased request volumes, as
accessing multiple files in a single snapshot creates pronounced
variations. In short, although it is possible for attackers to
exfiltrate files while staying under the threshold, such an attack
is bound to be slow, allowing for other approaches orthogonal
to ours (e.g., network monitoring) to potentially spot it. Yet,
adversarial attacks are a limitation of our approach.

REPLICAWATCHER during Kill Chain. We evaluated our
command injection scenario in a dynamic setting where an

TABLE V: AVG. DETECTION RATE BY NUMBER OF COM-
MANDS (TOP)/REQUESTS (BOTTOM) PER SNAPSHOT.

No. Commands per Snapshot
Phase 1 2 3 4 5 6

A 0.3750 0.6428 0.8214 0.9285 0.9821 1.0000
B 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000

C * 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

D 0.6250 0.8928 0.9821 1.0000 1.0000 1.0000

Note that our results only hold for our exfiltration implementation and do not
generalize to any (more stealthy) exfiltration scenarios.
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Fig. 12: Performance of REPLICAWATCHER under stealthy kill
chain attack. 1 cmd / phase denotes executing one command in
a snapshot (S) followed by inactivity in the next one. Note that our
results hold for our attack implementation and do not generalize to
all (more stealthy) evasion scenarios.

attacker methodically progresses through the kill chain phases
over time. We defined each phase to span 60 seconds, con-
sisting of two snapshots. Within each phase, the attacker
may execute one to six commands per snapshot. In an even
stealthier scenario, the attacker might execute one command
in the first snapshot and remain inactive in the subsequent one,
all within the same phase.

To show REPLICAWATCHER’s performance throughout the
kill chain, we employed the cumulative detection probability,
aggregating probabilities over phases. For a sequence of in-
dependent snapshots, the cumulative detection probability at
snapshot Sn combines the accumulated probability at Sn−1,
denoted as P (cmlSn−1

), with the detection probability at Sn,
as expressed in Equation 4. The detection probability at Sn is
given by the detection rates of our system as in Table V.

P (cmlSn
) = P (cmlSn−1

) + P (Sn)− P (cmlSn−1
∩ Sn) (4)

Figure 12 showcases REPLICAWATCHER’s detection prob-
ability across the kill chain phases. In reconnaissance, stealthy
activities with fewer commands allow attackers a temporary
evasion. However, as the command frequency rises, our de-
tection capability sharpens. This sensitivity becomes more
pronounced through the phases, culminating in the exfiltration
stage, when REPLICAWATCHER consistently and effectively
flags all anomalies. Nonetheless, our results only hold for
our exfiltration implementation. As discussed in Section VIII,
for more stealthy techniques, we realistically assume that our
approach can be evaded.

In summary, this experiment showed that, while it is
possible to craft an attack that evades our selected detection
threshold, such an attack is bounded in terms of activity that
attackers can perform without being detected. Thus, REPLI-
CAWATCHER effectively mitigates evasion attempts.

VII. RETRAINING CHALLENGES & LIMITATIONS

Retraining an IDS is complex due to challenges such as
handling labeling tasks and determining the optimal time to
retrain [21]. Yet, a major challenge is distinguishing normality
drifts from anomalies. In fact, attackers can manipulate retrain-
ing, making models less attack-sensitive [29]. We delve into
how these issues manifest in existing container-based IDSes.
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Consider an application that opens a file, reads data,
and creates an epoll instance to handle multiple I/O events.
Subsequently, it accepts a new connection from a client to
accommodate an increased number of users. Finally, it closes
the file and exits cleanly, resulting in a sequence S1. Assume
that both epoll_create and accept emerge as previously
unseen syscalls, because of the increased load handling.

S1 = open,read,epoll_create,accept,close,exit

Imagine the same application is under an attack that
exploits a bashdoor vulnerability to spawn a shell inside the
container and exfiltrate data to an externally controlled server,
generating S2. In this context, execve and sendto emerge
as previously unseen syscalls.

S2 = open,read,execve,sendto,close,exit

CHIDS. When creating the syscall sequence graph (SSG) from
S1 and S2, CHIDS groups all previously unseen syscalls into
a single node. However, this aggregation method produces
identical graphs and, thus, indistinct feature vectors for both
S1 and S2, ignoring their specifics. As a result, in production
settings, with only feature vector analysis, this technique
obscures unseen syscalls, impeding the distinction between
normal drifts and anomalies, and hindering retraining.

STIDE-BoSC. In forming BoSCs, the authors create the
other category in the last cell of a BoSC vector, aggregating
previously unseen syscalls and those that occur rarely in
training. This aggregation technique leads to identical BoSCs
for both S1 and S2, irrespective of their inherent differences.
Such BoSC overlaps make differentiating true anomalies from
normality drifts challenging, hence impeding retraining.

CDL. This work converts syscalls into a frequency vector,
assigning each syscall a distinct position in the vector. Al-
though this aids in distinguishing between normality drift and
anomalies, the method’s emphasis on frequency hinders its
detection capability. Thus, despite S1’s unseen syscalls, their
low frequency prevents alarm triggering. However, as in S2, a
real attack with subtle frequency changes remains undetected.

Unlike the mentioned solutions, REPLICAWATCHER com-
pares replicas in identical settings, removing the need for
training or retraining. Our self-adaptive detection bypasses re-
training challenges and avoids introducing room for adversarial
attacks, which retraining inevitably brings in.

VIII. DISCUSSION

Despite effectively detecting attacks without prior training,
REPLICAWATCHER is not exempt from limitations.

A. Detection Challenges & Potential Evasion

Brute-force attacks. One limitation of REPLICAWATCHER
lies in detecting brute-force attacks. While these attacks in-
volve a high number of benign attempts, their cumulative
frequency suggests malicious intent. In Kubernetes, with the
Ingress load-balancer [11], malicious requests are “evenly”
distributed via round-robin, obscuring anomalous patterns and
facilitating evasion. A solution is to monitor syscall frequency

and enforce stickiness techniques (e.g., session or IP affinity),
directing repeated attacker requests to a single replica. Yet,
using multiple sessions or IPs complicates detection.

Potential for evasion. To evade our detection, attackers have
two choices. 1) They can simultaneously affect all replicas with
the same input, aiming for consistent behaviors. However, this
requires knowing the replica count, which often varies with
workload (i.e., horizontal pod autoscaling). Also, concurrent
benign traffic can interfere with the distribution of the attack,
complicating evasion. Employing stickiness techniques might
accentuate abnormal patterns. However, these measures can
still be susceptible to evasion from varied IPs or sessions. 2)
Attackers can stage the attack over time, making each stage
produce activity below the system’s threshold. Determining the
precise detection threshold is however challenging. Even with
such knowledge, ensuring every stage consistently routes to
the same replica is not always feasible due to the round-robin
distribution. Furthermore, as the attacker progresses through
the attack chain, they must rely on more conspicuous activities
(e.g., downloading tools, using external commands) to achieve
their aims, making their actions less subtle (Section VI-H).

Attack lead time. REPLICAWATCHER employs a 30-second
monitoring interval to compare replicas. This time frame may
not align well with the average microsecond (or even shorter)
length of some attacks. For example, if an attacker swiftly
injects a malicious command to exfiltrate confidential data, by
the time REPLICAWATCHER’s 30-second monitoring window
detects anomalies, some data might already be compromised.

Identification of compromised replicas. We use the Jaccard
similarity to compare replicas. Given its symmetric nature, we
yield equal dissimilarity scores between a compromised and
a normal replica and the other way around, complicating the
identification of the compromised instance. While our focus
is on classifying snapshots, we plan to explore methods for
identifying individual compromised replicas in future work.

B. Deployment Challenges

Deploying REPLICAWATCHER in real-world settings re-
quires facing a few challenges to guarantee generalization.

Replicas synchronization amidst rolling updates. We as-
sume that all replicas run the same code version and updates
are applied simultaneously across replicas. While this is chal-
lenging in large infrastructures, Kubernetes allows for rolling
updates ensuring zero downtime [12]. Leveraging readiness-
probes, our system can temporarily exclude replicas being
created or deleted, focusing on the stable pods and preventing
false alarms. Once new replicas stabilize, monitoring can
resume normally, alleviating our assumption.

Rare bookkeeping activities. Replicas, despite processing
different requests, consistently behave due to their narrow
tasks. While we employ robust features and a 30-second
interval to flatten out outliers, some rare tasks such as activities
related to DevOps and maintenance (e.g., execing into a pod
for debugging), might diverge from the microservice’s standard
function, and thus can be classified as anomalies.

Scalability in complex multi-cluster architectures. Scaling
up replicas does not lead to noise. Our experiments validate
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consistent performance even when scaling up. Yet, nowadays,
large platforms (e.g., Skyscanner) leverage hundreds of nodes
distributed over several clusters to deploy their microser-
vices [15]. We expect such multi-cluster setups to introduce
heterogeneity and latency, thus hindering the performance of
our approach. Therefore, future work should explore the scal-
ability of monitoring replicas in multi-cluster environments.

Threshold tuning and maintenance. In our research, we
selected a threshold that is optimized for average performance
across different microservices. In specific real-world deploy-
ments, this threshold might not be optimal. Thus, operators
might need to tune the threshold based on their unique use
cases, potentially requiring adjustments on a per-service basis.

Reliance on Sysdig. REPLICAWATCHER uses Sysdig to extract
kernel events. This can pose challenges in fully-provisioned
and managed environments (e.g., GKE Autopilot). Specifically,
when using pre-configured node images not natively supported
by Sysdig (e.g., container-optimized OS), syscall interception
may be hindered. To address this, kernel headers might need
manual configuration on each worker node, raising overhead
and scalability concerns.

Multi-layered defenses. To cope with attacks and scenarios
not included in our threat model (e.g., attackers attempt-
ing to target all replicas simultaneously), real-world deploy-
ments should combine REPLICAWATCHER with orthogonal
approaches, e.g., network and resource monitoring.

IX.RELATED WORK

Anomaly-based IDSes. These solutions monitor containers by
leveraging either resource usage or syscalls. Resource usage
based solutions [13], [27], [45], [46] work under the assump-
tion that anomalies usually trigger a spike in a container’s
resource usage (e.g., CPU, memory, etc). While these tech-
niques can successfully detect attacks that demand an excess
of resources (e.g., Cryptojacking [28]), they overlook those that
do not require such high resource consumption. For syscall-
based solutions, besides CHIDS [14], CDL [33], and STIDE-
BoSC [1], there exist various other approaches in this field.
For instance, one approach focuses on tracking the frequency
of Falco alarms as a key indicator of anomalies [55]. Another
solution involves the integration of syscalls with explainable
machine learning algorithms, offering a new perspective on
how to interpret container anomalies [28]. Yet another ap-
proach uses n-grams of syscalls to identify anomalies based on
their occurrence probabilities [48]. Contrary to these baseline-
based approaches that demand periodic retraining to adapt to
normality shifts, our approach effectively detects anomalies by
comparing the patterns of replicas while accommodating drifts
without the need for retraining.

Rule-based IDSes. These solutions [3], [40], [50], [53] mon-
itor container activity using predefined security rules. These
rules, comprised of specific filesystem operations, syscall pat-
terns, and network activities, are regularly checked to match
the actual container behavior. These solutions may struggle
with the diversity of microservices. On one hand, enforcing
out-of-the-box security rules may trigger unnecessary alerts
given their broadness [51], thus leading to alert fatigue [23].
On the other hand, tailoring those rules to fit specific use

cases entails deep knowledge of each microservice, and can
be time-consuming and hard to scale for larger systems [51].
As opposed to these solutions, our approach compares each
container with its identical replicas. This provides context-
aware monitoring, thereby differentiating unexpected behavior
with more precision and less effort.

Container isolation mechanisms. Several mechanisms lever-
age the principle of isolation such as Seccomp [7],
SELinux [39], and AppArmor [20]. Seccomp restricts the
syscalls a container can execute, significantly limiting its
interaction with the kernel. Several works [17], [58] assist
in identifying the whitelisted syscalls that a container should
execute. AppArmor, another Linux kernel security module,
confines program capabilities with specific profiles, enforcing
the Unix access control. SELinux introduces mandatory access
controls, offering even finer-grained control over system inter-
actions. Though these solutions restrict unusual syscalls and
capabilities, they might inadvertently block regular activities
not exercised during training, potentially disrupting the normal
functioning of the container.

Training-less anomaly detection. Prior research [47] used a
training-less approach for anomaly detection in crowd scenes.
Our work is the first to employ a training-less approach for
the detection of anomalies in security applications.

Multi-version execution. Several works [4], [6], [10], [25],
[26], enhance software security through n-version execution
frameworks, monitoring syscalls on n executed variants for
divergence. While REPLICAWATCHER shares some similarities
with these works, it distinguishes itself as the first training-less
anomaly detector for containerized environments, addressing
unique challenges inherent to this context, such as scalability
and intrusiveness. In fact, our solution monitors replicas at
scale without altering the protected environment.

X. CONCLUSION

We presented REPLICAWATCHER, a training-less anomaly-
detection approach for microservices-based environments. Our
solution is based on comparing behavioral patterns of repli-
cas, enabling the detection of anomalies without the need
for a training baseline. In our evaluation, we showed that
REPLICAWATCHER is resilient against updates and normality
shifts, and it maintains its effectiveness without performance
degradation and without the necessity for retraining. Our
system effectively detects attacks with a low false positive rate
and an acceptable overhead, serving as a stepping stone for
effective intrusion detection in microservices-based settings.
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APPENDIX A
CASE STUDY

In this section, we delve into detailed examples on how
REPLICAWATCHER detects attacks.

ShellShock (CVE-2014-6271). Table VI reveals that the
compromised replica yields some observables not found
in its counterparts. To be specific, the attacker spawns a
reverse shell with the command bash -c bash -i >&
/dev/tcp/IP/444 0>&1, introducing unusual syscalls:
execve to start a bash process, dup to redirect STDIN
and STDOUT to a socket, and pipe to link the shell process
and network socket. Moreover, the attacker executes uname
-r for reconnaissance, triggering the uname syscall and the
system syscall category. Comparing features reveals distinct
dissimilarity at both the syscall and process levels between
the compromised replica and its counterparts. This results in

a significant Euclidean distance from the origin and certain
vectors, making the snapshot anomalous.

TABLE VI: SHELLSHOCK ATTACK. OBSERVABLES IN GRAY
ARE INDICATORS OF ATTACK ACTIVITY.

Feature Normal Replicas Compromised Replica

cmdline apache2 -DFOREGROUND apache2
-DFOREGROUND
bash -c bash -i >&
/dev/tcp/IP/4444
0>&1
uname -r

syscall type open, read, .., brk open, read, .., brk
execve, dup, pipe,
uname

syscall category ipc, file, .., net ipc, file, .., net
system

CouchDB RCE (CVE-2022-24706). Table VII indicates the
compromised replica’s significant deviation. The attacker’s use
of the command sh -c exec /bin/sh -s unix:cmd
leads to unusual syscalls, namely execve, dup, and pipe,
related to the sh process. Thus, comparing features across
replicas reveals notable differences at the syscall and proc
levels, creating a large Euclidean distance between certain
vectors and their origin, clearly marking the snapshot as
anomalous.

TABLE VII: COUCHDB RCE ATTACK. OBSERVABLES IN
GRAY ARE INDICATORS OF ATTACK ACTIVITY.

Feature Normal Replicas Compromised Replica

proc beam.smp, epmd, .. beam.smp, epmd, ..
sh

command epmd -daemon epmd -daemon
erl_child_setup erl_child_setup

sh -c exec /bin/sh -s
unix:cmd

syscall type open, read .., brk open, read .., brk
execve, dup, pipe

Path Traversal (CVE-2019-5418). Table VIII shows that
the compromised replica behaves differently compared to the
others. The attacker uses crafted paths to access sensitive data,
leading to the passwd file and the /etc directory being
generated. In comparing features across different replicas, a
clear difference is observed at the file descriptor level between
the compromised replica and the others. This difference leads
to a large Euclidean distance between some vectors and the
origin, making this particular snapshot stand out as unusual

TABLE VIII: PATH TRAVERSAL ATTACK. OBSERVABLES IN
GRAY ARE INDICATORS OF ATTACK ACTIVITY.

Feature Normal Replicas Compromised Replica

filename *.html, *.css, *.erb *.html, *.css, *.erb
passwd

directory /usr/src/rails/* /usr/src/rails/*
/usr/local/bundle/gems/* /usr/local/bundle/gems/*

/etc

CouchDB RPE (CVE-2017-12635). Table IX demonstrates
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a notable discrepancy in the compromised replica. The
attack leads to unusual directories and files, such as
/usr/local/var/lib/couchdb and _users.couch.
This shows that the attacker is submitting _users documents
with duplicate roles keys to circumvent access restrictions.
Upon the examination of features across replicas, we find a
notable discrepancy mostly at the file descriptor levels between
the compromised replica and its counterparts. This difference
translates into a considerable Euclidean distance from specific
vectors to the origin, making the snapshot anomalous.

APPENDIX B
KILL CHAIN PHASES AND COMMANDS

In our simulation, we acted as an attacker, progressing
through the kill chain stages: 1) reconnaissance, 2) preparation,
3) exfiltration, and 4) cleanup.

Reconnaissance. In this phase, the attacker reconnoiters the
target system (e.g., OS release, current user, etc) using built-in
shell commands, detailed in Table X. These commands, unlike
external ones in /usr/bin, operate within the shell, yielding
no new processes or syscalls. To illustrate, instead of directly
reading passwd with a command like cat, the attacker uses
read < /etc/passwd to extract the passwd content line
by line, accessing the output with echo $REPLY. This can be
more subtle and less likely to trigger alerts. Similarly, while
executing whoami leads to the invocation of the whoami
process and executing uname -s triggers the uname syscall,
using echo $USER and echo $OSTYPE achieves the same
goals with minimal footprints.

Preparation. In this phase, the attacker uses shell redirection
to create an empty file using > null, a more subtle method
than using editors (e.g., vi). By choosing a filename like null
- a common in Linux systems (e.g., /dev/null), the
attacker ensures the file blends seamlessly with typical system
files, evading detection. Next, using redirection once more,
the attacker channels the content of sensitive files into the
null file with > null < /etc/passwd, avoiding heavy

TABLE IX: COUCHDB RPE ATTACK. OBSERVABLES IN
GRAY ARE INDICATORS OF ATTACK ACTIVITY.

Feature Normal Replicas Compromised Replica

filename libc.so.6, mtab, .. libc.so.6, mtab, ..
_users.couch

directory /dev, /etc /dev, /etc
/lib/x86_64-linux-gnu /lib/x86_64-linux-gnu

/usr/local/var/lib/couchdb

TABLE X: COMMANDS AND THEIR STEALTHY EQUIVA-
LENTS IN RECONNAISSANCE

Attacker Aim Less Stealthy Stealthy

Get current user whoami echo $USER

Get OS release uname -s echo ${OSTYPE}

List directory ls echo *

Environment vars env set

Reading files cat /etc/passwd read < /etc/passwd

commands like cp. Last, to ensure the file content remains
obfuscated during transfer, and given the lack of built-in shell
commands for this purpose, the attacker resorts to external
commands for encoding (e.g., base64).

Exfiltration. In this phase, the attacker aims to trans-
fer the null file to a remote endpoint. Given the con-
straints of maintaining stealth in exfiltration, the attacker
executes external commands like curl and wget, in their
quiet modes to avoid noisy logging (e.g., wget --quiet
--post-file=null endpoint).

Cleanup. In this phase, the attacker aims to conceal their
activities by erasing evidence of their presence. They clear the
command history using history -c or empty the command
history with echo "" > ∼/.bash_history. Addition-
ally, they empty the null file they had transferred via >
null. For file removal tasks, the attacker typically relies on
external commands like rm or unlink.

APPENDIX C
MICROSERVICE APPLICATION

As shown in Table XII, our homebrew application con-
sists of several microservices, each developed using a unique
technology. These services allow users to browse items, add
their selections to a shopping cart, and complete purchases,
replicating the shopping journey typically encountered on real-
world e-commerce platforms.

APPENDIX D
ATTACK SCENARIOS

Table XIII describes the attacks used in our evaluation
dataset. To thoroughly assess the detection capabilities of
REPLICAWATCHER, we incorporate scenarios that reflect di-
verse threat impacts and scopes, targeting both our homebrew
and GOB platforms.

APPENDIX E
FEATURE DESCRIPTION

Table XI gives a more detailed description of the stud-
ied features. We select features to incorporate in REPLI-
CAWATCHER based on their resilience to background noise.
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TABLE XI: THE STUDIED FEATURES ACROSS REPLICAS.

Feature Description Security Rationale

Sy
sc

al
l

freq - executed Frequency of syscalls A spike in either successful or failed syscalls can signal repititive patterns to
brute-force credentials.freq - failed Frequency of syscalls returning error status

type The name of the syscall (e.g. open) An unexpected syscall of a distinctive category might indicate an unusual request to
the kernel.category The category of the syscall (e.g., net for socket)

max buffer len The data buffer length for events that have one, like read A large size may indicate the reading or exfiltration of a substantial amount of data
max latency The time spent waiting for the event to return (e.g., poll) A prolonged latency/delta duration could hint at malicious activities, such as attempts

to hook certain syscalls.max delta time Delta between the current and the previous event

Fi
le

D
es

cr
ip

to
r frequency Frequency of accessed files High frequency may hint at data exfiltration attempt.

directory If the FD is a file, the directory that contains it Unexpected directories or filenames could signal unauthorized access or compromiseof
the filesystem.filename If the FD is a file, the filename without the path

type Type of FD (e.g., file, ipv4, unix, pipe) Unexpected type of FD could signal an unsual file-activity.
client ip The client IP address Unusual addresses or/and ports may suggest external communication for malicious

activities (e.g.,reverse shell).client port The client port

Pr
oc

es
s

proc The name (excluding the path) of the process Unusual process names can suggest rogue applications or malware on the system.
cmdline The full process command line Unusual commands, executable names, and arguments might indicate unusual

instructions prompting unauthorized code execution on the system.executable The executable name (i.e., the first command line argument)
args The arguments passed on the command line
cwd The current working directory Unusual cwds can hint at unauthorized activities within the system’s file structure.

TABLE XII: MICROSERVICES AND THEIR APPLICATIONS.

Microservice Description Technology

SIGNUP Handles the registration of new users on the e-commerce application. PHP-CGI
LOGIN Handles user authentication, validating credentials and initiating user sessions. PHP-IMAP
PRODUCTCATALOG Manages product listings, including details, images, and pricing. PHP-FPM
PRODUCTDB Stores product data in a CouchDB database, serving JSON responses to the Product Catalog service. CouchDB
CART Manages shopping cart operations including item additions, deletions, and quantity adjustments. PHP-Apache
CHECKOUT Handles the checkout process, including order confirmation, payment processing. Ruby and Rails
USER PROFILE Enables users to view and update their personal information. PHP-Apache
USERDB Stores and retrieves user data. MySQL
SESSIONMANAGER Manages user sessions to keep users authenticated. Redis

TABLE XIII: DESCRIPTION OF THE ATTACK SCENARIOS INCLUDED IN THE EVALUATION DATASET.

CVE/CWE Short Description

CWE-89 An attacker utilized sqlmap to exploit an SQL injection vulnerability within a web form, with the goal of bypassing login procedures and gaining unauthorized
access

CWE-307 An attacker leveraged the brute-force tool Hydra to guess login credentials, exploiting the software’s lack of effective measures against multiple failed
authentication attempts in a short time period

CVE-2019-5418 An attacker employed the directory traversal technique via a manipulated Accept header, thereby accessing sensitive files on a targeted web server.
CVE-2018-3760 An attacker used directory traversal to craft requests for accessing files outside the application’s root directory on Sprockets.
CVE-2017-14849 An attacker exploited a flawed ".." handling vulnerability in Node.js to access unauthorized files.

CVE-2017-12636 An attacker with admin role in CouchDB executed arbitrary shell commands (admin role gained through CVE-2017-12635).
CVE-2022-24706 An attacker accessed an improperly secured default installation in CouchDB without authenticating and gained admin privileges.
File Inclusion An attacker exploited a weakness in PHP’s file inclusion mechanism, tricking the system into including a malicious external file, which was then executed

within the environment.
CWE-502 An attacker exploited a RCE vulnerability in the Python Pickle library to execute code remotely.

CWE-434 An attacker exploited insufficient file validation, uploaded a harmful script, and executed it in the environment.
CVE-2012-1823 An attacker exploited a flaw in PHP CGI and executed arbitrary commands by placing command-line options in the query string.
CVE-2018-19518 An attacker exploited a flaw in PHP imap_open() and executed arbitrary shell commands.
CVE-2014-6271 An attacker spawned a shell via the Shellshock vulnerability and executed arbitrary commands.
CWE-78 An attacker leveraged an input handling misconfiguration to inject commands remotely.

CVE-2017-12635 An attacker inserted _users documents with duplicate role keys (i.e., _admin key) and obtained unauthorized privileges.
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