
PROCATCH: Detecting Execution-based
Anomalies in Single-Instance Microservices

Asbat El Khairi Andreas Peter Andrea Continella
University of Twente, Netherlands University of Oldenburg, Germany University of Twente, Netherlands

a.elkhairi@utwente.nl andreas.peter@uni-oldenburg.de a.continella@utwente.nl

Abstract—Container anomaly-based detection systems are effective
at detecting novel threats. However, their dependence on training base-
lines poses critical limitations. Research shows these baselines degrade
rapidly in dynamic microservices-based environments, mandating fre-
quent retraining to uphold performance — an operationally expensive
process. Prior work (El Khairi et al., NDSS 2023) mitigates these chal-
lenges by comparing replicas — identical container instances — to de-
tect anomalies, thereby eliminating the need for training and retraining.
While effective, this approach relies on replication, making it ill-suited
for single-instance deployments, such as during low-traffic periods
when the orchestrator terminates idle replicas to optimize resources.
Moreover, its reliance on long observation windows for replica compar-
ison hinders its ability to detect modern, fast-moving container attacks.

We propose a novel approach to detecting container anomalies.
Our key insight is that containerized microservices, adhering to the
single-concern model, execute a single workload throughout their
lifecycle, resulting in stable execution behavior. This stability provides
two key advantages. First, it enables immediate and precise profiling
of expected execution behavior at container startup, eliminating the
need for prior training. Second, it causes container attacks—typically
involving adversarial code execution—to stand out as disruptions,
forming a robust and setup-agnostic baseline for anomaly detection.
Our system, PROCATCH, monitors the stability of execution behavior
in microservices, promptly identifying disruptions as anomalies.
We evaluate our approach against ten real-world container attack
scenarios. The results demonstrate PROCATCH’s effectiveness,
achieving an average precision of 99.77% and recall of 100%, with
an effective detection lead time.

I. INTRODUCTION

Cloud computing has driven a shift toward microservices,
a preferred architecture for scalable and resilient systems. By
decomposing applications into modular components, microservices
enable precise scaling and streamlined development [1]. Containers
have become the standard execution environment, offering
lightweight architecture, efficient resource use, and rapid
provisioning [2]. According to the latest CNCF survey, containers
now power over 90% of cloud-native deployments, highlighting
their dominance in modern infrastructure [3].

Nevertheless, the rapid evolution of cloud environments has
reshaped the security landscape, exposing new exploitable attack
vectors [4]. In fact, public-facing containerized microservices have
become attractive targets for adversaries seeking to compromise
cloud infrastructure. This risk is amplified by the ephemeral
nature of containers. Recent studies show that 70% of containers
terminate within five minutes [5]. While such short lifespans
improve scalability and resource utilization, they also open narrow

windows for launching fast, automated attacks, highlighting the
need for timely and precise anomaly detection mechanisms.

Various solutions have been developed to address container
attacks. In the industry, rule-based IDSes such as Falco [6] and
Tracee [7] monitor kernel-level events using predefined rulesets to
detect malicious activities. Beyond detection, container platforms
such as Docker [8] and Kubernetes [9] provide preventive mech-
anisms, such as Seccomp profiles [10] to block ”non-whitelisted”
syscalls, and read-only root filesystems [11] to prevent filesystem
writes [12]. On the research front, substantial efforts have focused
on leveraging system call (syscall) analysis to detect malicious
behavior in containerized environments. For example, CDL [13]
monitors syscall frequency patterns, identifying anomalous spikes
as indicators of potential compromise. A more advanced approach,
CHIDS [14], integrates machine learning with graph-based rep-
resentations of syscall traces to quantify the influence of previously
unseen syscalls and their arguments on container behavior.

While these solutions provide runtime security to containers, they
show significant limitations. Rule-based solutions such as Falco and
Tracee do not provide comprehensive coverage of container attacks.
While they support custom rule creation, translating Indicators of
Compromise (IoCs) into actionable rules demands substantial time,
domain expertise, and a deep understanding of each microservice’s
behavior, making it difficult to scale. Moreover, the read-only
filesystem proves ill-suited for microservices that demand writable
storage for normal functionality (e.g., caching). While mounting
ephemeral volumes (e.g., emptyDir) addresses these writing
needs, it inadvertently introduces attack vectors that adversaries
can leverage for code execution. On the other hand, anomaly-based
detection systems such as CDL and CHIDS as well as preventive
mechanisms such as Seccomp, are fundamentally constrained by
their reliance on training to establish a baseline of normal behavior
(e.g., legitimate syscalls). First, constructing such a baseline
demands extended training periods to capture application-specific
variations and edge cases. Second, even with a well-established
baseline, the dynamic nature of microservices — driven by frequent
feature rollouts — inevitably alters the definition of ”normal”
behavior, rendering these baselines quickly obsolete [15]. This
rapid drift often results in an excessive volume of false positives,
necessitating periodic retraining to uphold performance — an
operationally impractical process in security applications [15], [16].

These limitations position REPLICAWATCHER [15] as a
significant advancement in threat detection for containerized

microservices. Built on the insight that replicated microservices,
adhering to the single-responsibility principle, consistently exhibit
analogous behavior under normal operation, REPLICAWATCHER
systematically compares the behavior of replicas on a worker
node to identify inconsistencies as anomalies, eliminating the need
for training and retraining. Yet, this approach has two notable
limitations. First, its reliance on replication makes it inoperative
in non-replicated environments. Specifically, during low-traffic
periods, some replicas remain idle and are flagged by orchestrators
(e.g., Kubernetes) as unnecessary resources, triggering automatic
downscaling via the horizontal pod autoscaler (HPA) [17]. While
this optimizes resource allocation, it can reduce a microservice to
a single-instance deployment. Similarly, resource constraints may
cause the orchestrator scheduler to place a replica on a different
node than its peers, effectively isolating it as a standalone instance.
In both scenarios, the absence of comparable replicas renders
REPLICAWATCHER inactive, leaving microservices vulnerable to
undetected threats. Second, its reliance on prolonged monitoring
windows (i.e., 30 seconds) – to filter out replicas’ background noise
– fails to align with modern container attacks that unfold within
seconds. In fact, adversaries increasingly leverage the ephemeral
nature of containers and AI to execute automated attacks [5],
effectively outpacing REPLICAWATCHER’s detection capabilities.

In this work, we propose a novel approach to container execution-
based anomaly detection that does not mandate training, enables
real-time detection, while supporting non-replicated deployments.
Our solution rests on the key observation that containerized mi-
croservices execute a single workload [18], [19], leading to a stable
and consistent execution behavior throughout their lifecycle [15].
This stability allows for the immediate and accurate profiling
of expected execution behavior at container startup, obviating
the need for prior training to establish a baseline of ”normal”
behavior. Furthermore, it establishes an effective foundation for
detecting container attacks. These attacks typically involve running
adversarial code within the container [20], such as deploying
cryptominers, establishing command-and-control (C2) channels,
or planting persistence backdoors—inevitably disrupting the stable
execution behavior of microservices. Such disruptions serve as
reliable indicators of malicious activity, enabling anomaly detection
without requiring specific deployment setups (e.g., replication).

While this approach eliminates the need for training and
enables effective attack detection in non-replicated deployments,
its effectiveness hinges on the ability to handle the inherent
background noise introduced by runtime dynamics. This noise
introduces complexity, necessitating robust monitoring mechanisms
to reliably differentiate benign variations from genuine anomalies.

Background noise. Microservices typically exhibit stable execution
behavior throughout their lifecycle, driven by their context-bounded
design. However, normal operational dynamics, such as concurrent
processing, traffic handling, and resource scaling, can introduce
variability into execution activity, potentially increasing the risk
of false positives. Therefore, our approach must be resilient to such
noise, distinguishing benign transient behavior from adversarial
efforts with high fidelity.

To address this challenge, we present PROCATCH, a novel

approach to container execution-based anomaly detection. At its
core, PROCATCH profiles deterministic execution attributes at
container startup to establish a baseline of expected behavior –
a task designed to be training-less and lightweight. At runtime,
it detects deviations from this baseline as indicators of potential
compromise. In summary, our key contributions are as follows:

• We present a novel approach for detecting container execution-
based anomalies by leveraging the stable execution behavior
inherent to microservices, identifying disruptions from this
stability as adversarial behavior.

• We implement this approach in a prototype named
PROCATCH, a node-based IDS for execution-based anomalies
in containerized microservices.

• We evaluate PROCATCH on four representative microservices-
based applications from major cloud vendors, achieving
99.77% precision and 100.00% recall across 10 real-world
container attack scenarios.

In the spirit of open science, we make PROCATCH available at
https://github.com/asbatel/procatch.

II. PRELIMINARY ASSESSMENT

Detecting anomalies based on execution behavior requires
addressing two key challenges: (A) identifying execution-level
attributes that carry strong security semantics, and (B) ensuring
their robustness to benign variability to reduce false positives. To this
end, we conducted a preliminary assessment to explore candidate
attributes and selected those best suited for our detection approach.

A. Execution Attribute Exploration

In Linux, each process is associated with a well-defined set of
attributes that describe its execution context and environment [21].
These include the process name (i.e., proc), which identifies
the currently running process; the executable name (i.e., exe),
denoting the binary or script used to spawn the process; the exe-
cutable path (i.e., exe_path), representing the absolute location
of the binary within the filesystem; the executable inode (i.e.,
exe_inode), which refers to the inode number of the executable;
and the current working directory, indicating the directory context in
which the process executes. In our assessment, we focus on all these
execution attributes, as they are fundamental to malicious execution
and reliably capture artifacts indicative of adversarial activity [15].

TABLE I: MICROSERVICES-BASED APPLICATIONS.

Application # of microservices Polyglot Maintainer

BOOKINFO [22] 4 ✓ Istio
SOCK-SHOP [23] 7 ✓ Weavework
MU-SHOP [24] 9 ✓ Oracle
MARTIAN BANK [25] 8 ✓ Cisco

B. Execution Attribute Stability under Normal Behavior

To address the second consideration, we evaluate the stability of
selected execution attributes during normal operation. Specifically,
we assess how consistently these attributes remain within their

baseline over time, quantifying their sensitivity to background noise
and runtime variability.
Preliminary setup. We conducted our assessment on four
microservices-based applications: BOOKINFO [22], SOCK-
SHOP [23], MU-SHOP [26], and MARTIAN-BANK [25]. These
applications span different languages and runtimes, reflecting the
heterogeneous environments typically found in production-grade
clusters, and are widely used in state-of-the-art microservices secu-
rity research [1]. We deployed these applications on a single-node
Kubeadm cluster with 16 GB of RAM, running Ubuntu 24.04.1 LTS
as the node operating system and containerd [27] as the container
runtime. To collect execution attributes, we employed Falco [28] as
a kernel tracing tool, providing fine-grained visibility into execution
behavior. To simulate realistic workloads, we generated diverse
traffic using Locust [29], Selenium [30], and Curl [31], ensuring
broad coverage of typical application interactions. We ran each
microservice for three hours, starting monitoring only after the
corresponding pod 1 reaches the PodReady state [32]. This state
indicates that pod initialization has completed, including entrypoint
execution, root filesystem setup, and successful completion of the
readiness probe [33], ensuring the microservice is fully operational.
This timing also excludes ephemeral binaries invoked during
initialization. At the PodReady timepoint, we recorded the
baseline set of execution attributes for each microservice. We then
monitored each microservice at one-second intervals for three hours,
capturing observed attributes at each interval. To quantify stability,
we computed the ratio of attributes not present in the baseline to
the total number of attributes observed at each interval. Table II
reports the average stability across all intervals and microservices
within each application. A value of 1 indicates complete stability,
where no new attributes appeared beyond the baseline.

TABLE II: STABILITY IN EXECUTION ATTRIBUTES

Application proc exe exe_path exe_inode cwd

BOOKINFO [22] 0.7825 1.0000 1.0000 1.0000 1.0000
SOCK-SHOP [23] 0.8914 1.0000 1.0000 1.0000 1.0000
MU-SHOP [26] 0.9088 1.0000 1.0000 1.0000 1.0000
MARTIAN BANK [25] 1.0000 1.0000 1.0000 1.0000 1.0000

Results analysis. As shown in Table II, all execution attributes
remain stable across applications, with the sole exception of the
proc field, which captures process names. Deviations in this field
arise from runtime-level behaviors common in managed execution
environments, such as thread creation and internal thread renaming.
For example, in some BOOKINFO microservices, the Java Virtual
Machine (JVM) spawns additional threads—such as Executor
and Signal Reporter—after the PodReady timepoint,
as part of its background scheduling and signal handling. Similar
patterns are observed in other applications: a SOCK-SHOP microser-
vice using the V8 JavaScript engine spawns a dedicated V8 thread
at runtime, while JVM-based microservices in MUSHOP exhibit
renamed threads such as C1 and HikariPool-1, reflecting

1A pod is a Kubernetes abstraction that groups one or more containers.

just-in-time compilation and internal resource management. In
contrast, all executable-related fields (e.g., exe, exe_path,
and inode) remain stable across all applications. These attributes
reference the binary invoked by the container’s entrypoint, which
encapsulates the full execution context of the microservice. Also,
the current working directory field exhibits similar stability, as
microservices typically run non-interactive workloads and retain
the working directory configured during initialization, commonly
defined via the image’s WORKDIR directive.

Armed with these observations, we build our detection approach
exclusively on attributes that remain stable across microservices,
deliberately excluding the process name attribute (i.e., proc)
due to its susceptibility to benign thread-level variation. While
our preliminary assessment focuses on normal behavior, we show
in Section V that the selected attributes generalize well to other
microservices and remain robust under adversarial conditions.

III. THREAT MODEL

We focus on stateless microservices deployed within Kubernetes
clusters, each operating within a well-defined and bounded context,
consistent with the single-responsibility principle.

We consider an external adversary with access to a pod running
as root—a misconfiguration observed in 83% of real-world
deployments [34]. This access may result from vulnerabilities or
misconfigurations in public-facing microservices. The adversary’s
goal is to execute code within the compromised pod to abuse
computing resources, deploy malware, or exfiltrate data. We
assume such actions inevitably introduce abnormal execution
artifacts, deviating from the microservice’s expected behavior.
While stealthy adversaries may attempt to evade such artifacts,
their techniques either lack practicality or remain constrained
to low-impact activities, as we demonstrate in Section VI. Also,
we do not consider attacks that rely on memory corruption, as
modern microservices are predominantly written in memory-safe
languages such as Go, Java, and Python. We further assume that
microservice images are sourced from trusted registries, excluding
attacks involving unverified or adversary-controlled images. Finally,
we do not consider non-execution-based attacks (e.g., directory
traversal), as they do not manifest at the execution level and would
unavoidably leave traces that tools orthogonal to ours—such as web
application firewalls —can detect via HTTP(S) traffic inspection.

Our system is an anomaly-based IDS designed to monitor
microservices for execution-based anomalies. We assume Falco is
deployed on all worker nodes to provide execution–level visibility
and enforce our detection logic. While attackers may attempt to
tamper with our solution, doing so requires escaping the container
environment to the underlying node. Although container escape
attacks are a valid concern, they are outside the scope of our work.

IV. APPROACH

We propose PROCATCH, a detection system for identifying
container execution-based anomalies. Our key observation is that mi-
croservices exhibit stable execution behavior due to their narrow op-
erational scope. In contrast, container attacks commonly introduce
abnormal executions either through the deployment of malicious

 OS Kernel

containerd / CRI-O

container

 Pod

falco-ebpf

 Syscall Interface

Procatch

Falco

A- Baseline CreationWorker node

cwd exe_path… …

Anomaly

Real-time monitoring

B- Anomaly Detection

483783
483830

487488
487749

pi
ds

container (PID cgroup)

exe

Baseline

PodScheduled Initialized PodReady

Baseline

…

exeexe_inode exe

exe_path
exe_inode

cwd

Fig. 1: PROCATCH Overview. (A) We establish a baseline by capturing execution attributes immediately after the pod reaches its ready state. (B)
We then transition to active monitoring, using this baseline to detect abnormal observables.

payloads or the misuse of system utilities. By establishing a baseline
of expected execution behavior at pod startup, PROCATCH contin-
uously monitors for deviations indicative of malicious behavior.

Figure 1 illustrates the design of PROCATCH, which operates
in two phases: baseline creation and anomaly detection. In the
baseline creation phase (A), PROCATCH records all executables
invoked by the pod—along with their absolute paths, inodes, and
working directories—immediately after the pod reaches the ready
state. In the anomaly detection phase (B), it continuously monitors
the pod for deviations across these attributes.

A. Baseline Creation

The first phase of our approach establishes a baseline of
execution-related attributes through two key steps:

1) Cgroup Identification.
Control Groups (cgroups) are a fundamental Linux kernel

mechanism that enables fine-grained isolation, allocation, and
monitoring of system resources across groups of processes [35]. In
Kubernetes, each pod is assigned a dedicated cgroup hierarchy to
manage its resource usage. Once the pod reaches the PodReady
state, we establish a baseline of legitimate execution attributes. We
start by identifying the pod’s container and retrieving the host-level
PID of its main process from container metadata. This PID is used
to resolve the pod’s cgroup via /proc/<PID>/cgroup. We
then enumerate all PIDs belonging to that cgroup, yielding the
complete set of active processes associated with the pod.

2) Execution Attribute Extraction.
For each process (i.e., PID) in the pod’s cgroup, we extract

execution attributes externally from the host without requiring in-
pod instrumentation. Specifically, we obtain the executable name by
parsing the first argument in /proc/<PID>/cmdline, which
reflects the binary used to launch the process. We retrieve executable
path by resolving the symbolic link /proc/<PID>/exe,
yielding the absolute path of the binary as seen from the pod’s root
filesystem. We obtain executable inode via a metadata lookup on
/proc/<PID>/root/<exe_path>. Finally, we extract the
current working directory by resolving /proc/<PID>/cwd.

It is noteworthy that we establish a new baseline with each
pod deployment, avoiding reliance on historical data or previous

microservice versions. This ensures alignment with the current
microservice image, adapting seamlessly to the evolving nature
of microservices, without the need for training or retraining.

B. Anomaly Detection

At runtime, PROCATCH monitors each pod for deviations from
its baseline by monitoring the executable name, absolute path,
inode, and current working directory attributes. As shown in
Section II, these attributes exhibit stable behavior under benign
conditions. PROCATCH leverages this stability to flag any deviation
as anomalous. This approach is fully training-less and rule-agnostic.

To enable efficient monitoring, we integrate our detection logic
into Falco, a lightweight, eBPF-based runtime security engine that
inspects execution activity directly from the kernel with minimal
overhead [36]. Also, with over 130 million downloads [37], Falco
is widely adopted in the security community and offers native
integration with Kubernetes. This widespread use ensures that PRO-
CATCH can be deployed seamlessly within existing environments,
without introducing additional setup or infrastructure requirements.

V. EVALUATION

We implement PROCATCH as a shell-based tool and conduct
a comprehensive evaluation of its effectiveness across diverse
container attack scenarios. Beyond benchmarking it against
REPLICAWATCHER – the only training-less detection system for
containers, we also assess its detection lead time and resilience
against evasion techniques. Finally, we evaluate PROCATCH’s scala-
bility by profiling its performance under varying workload densities,
demonstrating its practicality in microservices-based environments.

A. Experimental setup.

Experimental setup. We evaluate our approach using four
microservices-based applications: GOOGLE ONLINE BOUTIQUE
[38], BANK-OF-ANTHOS [39], RETAIL-STORE [40], and AKS-
STORE [41]. These applications are selected for their relevance to
recent state-of-the-art research in container security [1], [15] and
for their polyglot architectures, which reflect the diversity and scale
found in real-world deployments. All applications are deployed
on a single-node Kubeadm cluster with 16 GB of RAM, running

Ubuntu 20.04.6 LTS and using containerd [27] as the container
runtime. We conduct our experiments under two operational modes.

Normal mode. We reuse the same traffic generation setup as in the
preliminary assessment, employing tools such as Locust [29], Sele-
nium [30], curl [31] to simulate realistic user flows [38]. To reflect
dynamic cluster behavior, we enable the Horizontal Pod Autoscaler
(HPA) [17], which adjusts microservice replicas in response to load.
During the high-traffic phase, HPA scales the replicas to two, while
in the low-traffic phase, it downscales them to one.

Attack mode. We simulate attacks under the assumption that the
adversary has root access within the pod, via application-level
vulnerabilities or misconfigurations. Instead of reproducing full
attack chains, we focus on in-pod techniques commonly observed
in real-world container compromises. These include cryptojacking
(hijacking resources to validate cryptocurrency transactions),
DDoS (deploying binaries to generate high-volume traffic), and
proxyjacking (abusing the container’s network to reroute traffic
through proxy services). These attacks often involve additional steps
such as establishing persistence, connecting to C2 infrastructure,
disabling security mechanisms, and removing competing programs
to maintain control. We replicate these behaviors using publicly
available proof-of-concept exploits [42]–[44]. The attack scenarios
are detailed in Table IV.

TABLE III: EVALUATED MICROSERVICES.

Name # microservice Polyglot Maintainer

GOOGLE ONLINE BOUTIQUE [38] 10 ✓ Google Cloud
BANK-OF-ANTHORS [39] 6 ✓ Google Cloud
AKS STORE [41] 7 ✓ Microsoft Azure
RETAIL STORE [40] 5 ✓ Amazon AWS

TABLE IV: CONTAINER ATTACK SCENARIOS.

Attack Scenario Microservices-based Application

Sysrv-Hello [44] GOOGLE ONLINE BOUTIQUE
Kinsing [42] GOOGLE ONLINE BOUTIQUE
RebirthLtd [45] GOOGLE ONLINE BOUTIQUE
Kangaro [46] BANK-OF-ANTHOS
Shellbot [43] BANK-OF-ANTHOS
Mirai [47] BANK-OF-ANTHOS
Scarleteel [48] RETAIL-STORE
Lucifer [49] RETAIL-STORE
LABRAT [50] AKS-STORE
TeamTNT [51] AKS-STORE

Evaluation dataset. In normal mode, we monitor each
microservice for a continuous ten-hour period. While PROCATCH
is designed to function in a ”watcher” mode for real-time anomaly
detection, for evaluation purposes, we segment this monitoring
period into sequential intervals, referred to as captures. Each
microservice has 1200 captures, each spanning 30 seconds and
recording any abnormal execution attribute observed within the
pod or its replicas. In attack mode (conducted independently of the
ten-hour baseline monitoring period), we perform 20 attack runs
for each microservice. While these attacks are intended to run for

the lifetime of the container, we consider an attack complete once
all preparatory steps (e.g., fetching binaries, disabling defenses,
establishing a C2 channel, etc.) have been performed and the final
payload is actively running. Each run targets a single application
and captures the attack execution phase. Notably, during this time,
the microservice continues to handle normal traffic, reflecting
realistic conditions where legitimate and malicious activity coexist.

B. Detection Capabilities
Table V presents the performance of PROCATCH across diverse

attack scenarios and microservices-based applications. PROCATCH
consistently achieves a recall of 100%, supporting the central
premise of our approach: container attacks invariably disrupt the
stable and narrow execution behavior of microservices. Actions such
as downloading payloads, invoking system utilities, or modifying
file attributes result in the introduction of previously unseen
executables—along with their associated paths and inodes—thereby
diverging from the expected execution profile. By flagging these
deviations, PROCATCH reliably detects container attacks.

Nevertheless, our solution exhibits minimal false positives,
occurring exclusively when replicas scale down in response to
load fluctuations. In Kubernetes, a pod consists of two containers:
the main application container, which executes the primary
workload, and the pause container, which runs in an idle sleep loop,
preserving shared namespaces such as network and PID throughout
the pod’s lifecycle [52]. When querying the running container
inside a pod during baseline creation, we obtain only the main
application container. This is because Kubernetes treats the pause
container as part of the pod sandbox rather than a user-managed
workload, and therefore excludes it from standard container
enumeration. As a result, our baseline inherently omits the pause
container. Later, when a pod is terminated during downscaling,
the pause container is gracefully stopped, causing its pause
binary to exit. This results in the binary—along with its path and
inode—being incorrectly flagged as anomalous, producing false
positives. Yet, these alerts can be suppressed by correlating them
with pod termination events from the kube-apiserver (e.g.,
involvedObject.kind=Pod, reason=Killing), effectively filtering out
false positives related to pod shutdown.

TABLE V: DETECTION PERFORMANCE OF PROCATCH COMPARED TO
REPLICAWATCHER (PREC: PRECISION, REC: RECALL, F1: F1-SCORE)

PROCATCH ReplicaWatcher
Scenario Prec. Rec. F1. Prec. Rec. F1.

Sysrv-Hello 0.9983 1.0000 0.9991 0.9706 1.0000 0.9851
Kinsing 0.9983 1.0000 0.9991 0.9706 1.0000 0.9851
RebirthLtd 0.9983 1.0000 0.9991 0.9706 1.0000 0.9851
Kangaro 0.9972 1.0000 0.9986 0.9833 1.0000 0.9916
Shellbot 0.9972 1.0000 0.9986 0.9833 1.0000 0.9916
Mirai 0.9972 1.0000 0.9986 0.9833 1.0000 0.9916
Scarleteel 0.9967 1.0000 0.9983 0.9856 1.0000 0.9927
Lucifer 0.9967 1.0000 0.9983 0.9856 1.0000 0.9927
LABRAT 0.9988 1.0000 0.9994 0.9809 1.0000 0.9903
TeamTNT 0.9988 1.0000 0.9994 0.9809 1.0000 0.9903

Overall, PROCATCH offers strong detection capabilities with
minimal transient false positives, making it an effective solution for
execution-based anomaly detection in microservices environments.

TABLE VI: AUTOMATED MIRAI ATTACK. ✓ INDICATES COMMAND DETECTION, × INDICATES FAILURE TO DETECT, AND � SIGNALS AN
ALARM. MARKS THE FIRST DETECTED ATTACK INDICATOR, MARKS MIRAI’S EXECUTION. DETECTION LEAD TIME: 701MS.

TimestampAttack steps PROCATCH Artifacts

18:42.865 cd /tmp ×
18:42.866 wget http://<at-IP>/l4sd4sx64 ✓
18:42.869 � exe=wget, exe_path=/usr/bin/wget, exe_inode=3467593, cwd=/tmp/

18:43.567 chmod 777 l4sd4sx64 ✓
18:43.569 � exe=chmod, exe_path=/usr/bin/chmod, exe_inode=2593358, cwd=/tmp/

18:43.570 ./l4sd4sx64 ✓
18:43.572 � exe=./l4sd4sx64, exe_path=/l4sd4sx64, exe_inode=2599981, cwd=/tmp/

C. Comparison with REPLICAWATCHER

We evaluate PROCATCH against REPLICAWATCHER, a
training-less anomaly-based IDS, using the dataset structure from
the original paper—1000 normal and 100 attack snapshots per
microservice. Also, we use a four-replica setup and apply the
detection threshold (ϵ=0.3) and snapshot duration (τ =30s), in
adherence to the original paper’s defined parameters.

ReplicaWatcher. As shown in Table V, REPLICAWATCHER
achieves an average recall of 100%. The evaluated attacks involve
extensive adversarial activity, including tool downloads, file
permission changes, and malware deployment. These actions
introduce abnormal syscalls, executables, process names, and
file descriptors within the compromised replica, allowing
REPLICAWATCHER to detect them reliably. However, this approach
yields some false positives. We attribute these to background noise
in replica behavior, particularly at the syscall level, where transient
variations are occasionally misclassified as anomalies.

PROCATCH outperforms REPLICAWATCHER. By leveraging the
stable execution behavior of microservices, our solution monitors
for abnormal execution-related artifacts, effectively detecting
container attacks without the need for training, retraining(s) or any
specific deployment setup such as replication.

D. Attack Detection Lead Time

In this section, we evaluate the detection lead time of PROCATCH.
As container attacks are increasingly automated and capable of
unfolding within seconds [5], we define lead time as the interval
between the first detected preparatory action and the execution
of the attack payload. Typically, this payload either functions as
the primary malware—such as a cryptominer or DDoS bot—or
as a script that executes multiple actions before delivering the final
payload, such as downloading tools (e.g., crontab), eliminating
competing mining programs, etc. This definition quantifies
PROCATCH ’s ability to generate timely alerts before the attacker
executes the payload and impacts the system.

Lead time analysis. As shown in Figure 2, our solution detects
most attacks with significant lead times. Across seven attack
scenarios, our approach achieves detection lead times ranging
from 700 to 900 ms. These attacks typically follow three steps:
downloading the payload, setting its permissions to executable,
and executing it. Notably, our approach consistently detects the
attack during the download phase. Specifically, when the attacker

Sysrv-Hello
Kinsing

RebirthLtd
Kangaro

Shellbot
Mirai

Scarleteel
Lucifer

Labrat
TeamTNT

Attacks

0

5

10

15

Le
ad

 T
im

e
(s

ec
on

d)
Fig. 2: Detection lead time on different automated attacks.

invokes wget to retrieve a payload, the action spawns an unseen
executable along with its corresponding path and inode, triggering
early detection before the execution of the payload itself. However,
in the Lucifer, Kangaro, and Kinsing scenarios, we
observe longer lead times of 17.22, 16.32, and 16.92 seconds,
respectively. The observed delay is due to the attack sequence
incorporating the installation of additional dependency tools (e.g.,
cron) before retrieving and executing the payload. Overall, the
lead times achieved are sufficient to support timely intervention
by incident response teams before the attack can escalate.

E. Execution Time

Falco has already demonstrated its efficiency and low
overhead as a runtime tracing tool due to its eBPF-based event
monitoring [36]. In our evaluation of PROCATCH’s execution time,
we focus exclusively on the baseline creation phase. We measure
how long PROCATCH takes to generate the baseline for a pod. This
involves identifying the container running within the pod, locating
its cgroup, and extracting its execution attributes. We cover various
deployment scenarios, ranging from a single pod to 40 pods,
reflecting real-world pod-per-node densities [53]. To scale to 20, 30,
and 40 pods, we replicate microservices accordingly. We evaluate
the execution time of PROCATCH on a kubeadm worker node with
an Intel Core i7-10850H (Quad-Core, 2.7GHz) and 16GB of RAM.

PROCATCH’s execution time depends on three key factors: the
number of pods on the node, the number of PIDs at the PodReady
state (varying based on the microservice’s base technology), and
the overhead from querying pod and container metadata via the
Kubernetes API and container runtime. Kubernetes API interactions
introduce network and authentication overhead, while container

1 2 3 4 10 20 30 40
Number of Pods

0

1

2

3
Ti

m
e

(s
)

Fig. 3: Avg. execution time of PROCATCH for baseline creation across
different numbers of pods.

runtime queries add processing overhead via gRPC [54]. As pod
count grows, these factors collectively impact execution time. As
shown in Figure 3, across 10 baseline creation runs, PROCATCH
demonstrates sublinear scaling with respect to the number of pods
on the node. It establishes a baseline for an individual pod in 0.4
seconds, scaling efficiently to complete baseline creation for 40 pods
in just 2 seconds. This shows that PROCATCH sustains low-latency
performance even at peak pod-per-node density, underscoring its
computational efficiency and suitability for large-scale deployments.

F. Case Study

This subsection presents a detailed example of PROCATCH
detecting an attack.

Kinsing. This attack involves the deployment of the Kinsing
malware [42]. It begins by updating the package manager and
installing auxiliary tools (e.g., cron), leading to the execution of
system-level binaries for package management (e.g., /usr/bin/dpkg),
cryptographic verification (e.g., gpgv), and filesystem operations
(e.g., chmod). The attacker then retrieves a staging script (d.sh)
using wget, adjusts its permissions (chmod), and executes it
(d.sh). The script coordinates a multi-stage attack: (1) disabling
security services such as Aegis; (2) terminating competing
cryptominers and removing their artifacts; and (3) downloading
and executing the final Kinsing payload. Across these steps, the
attacker invokes previously unseen binaries such as ps, rm, chmod,
grep, crontab, wget, and kinsing, all observed with new paths and
inodes—allowing our solution to detect the attack.

G. Robustness Against Evasion

In this subsection, we assess the robustness of PROCATCH
against evasion attempts. To evade detection, an adversary must
avoid introducing execution-based artifacts.

1) Evasion Techniques

We identify two techniques that can facilitate execution without
leaving detectable observables.

Shell built-ins. These are commands interpreted and executed
directly by the shell without spawning new processes or invoking
external binaries [55].

In-line execution. This technique leverages existing binaries—such
as embedded interpreters (e.g., python)—to execute malicious code
within the scope of a legitimate executable.

2) Experiment description

In our experiment, we assume that the shell binary is part of each
microservice’s baseline, allowing the attacker to obtain shell access
without triggering detection. Our analysis focuses exclusively on
adversarial activities executed within the pod. We model all attacks
in our dataset using a four-stage kill chain, including reconnaissance,
environment preparation, payload preparation, and execution. These
stages incorporate the evasion techniques introduced earlier (see
Table VII for an example). We use the same experimental setup as
in our evaluation: 20 attack runs per microservice. For each stage,
we report the average detection performance across all attacks.
Reconnaissance. In this stage, attackers gather system information
to understand the environment and assess potential execution
vectors. This includes identifying the user ID to determine their
level of access within the pod, inspecting applied capabilities to
check for privilege restrictions (e.g., /proc/self/status),
querying CPU and memory quotas to assess available resources
(e.g., cpu.cfs_quota_us), and identifying the active binary
running within the pod (e.g., /proc/1/cmdline).
Environment preparation. In this phase, the attacker prepares
the pod for running the payload. For example, they increase the
file descriptor limit to support more connections and open files,
disable the NMI watchdog to prevent kernel lockup detection, and
turn off security mechanisms such as SELinux to remove access
restrictions. Additionally, they modify the shell’s execution path
to include the current directory, allowing payload execution without
requiring explicit relative paths (i.e., omitting ./).
Payload preparation. In this phase, the attacker prepares the
payload using in-line execution to bypass the limitations of shell
built-ins, which lack support for tasks such as file retrieval and
permission modification. Instead of invoking external tools such
as wget or chmod, the attacker leverages built-in functionality
of the legitimately running binary. For example, if the pod runs
python, they use urllib.urlretrieve to download
the payload and save it under the name python, mimicking
a legitimate binary. They then invoke os.chmod to adjust its
permissions, all within the legitimate executable’s context.
Payload execution. In this phase, the attacker executes the payload.

3) Performance Analysis.

As shown in Table VIII, shell built-in commands allow the
attacker to operate quietly during the reconnaissance and environ-
ment preparation stages, as these commands do not spawn new
executables and therefore avoid leaving detectable traces. Yet, this
technique does not extend to payload preparation, which requires
retrieving a payload and modifying its permissions—operations
that typically involve external executables. To maintain stealth,
the attacker uses in-line execution via an embedded interpreter.
However, this technique depends on interpreter runtimes, which are
absent in most microservices. In practice, microservices are typi-
cally compiled into self-contained binaries (e.g., /src/server,
/app/cart) during the image build process. Thus, evasion was
successful only in Python- and Node.js–based microservices. In all
other cases, PROCATCH detects payload preparation, yielding an

TABLE VII: EXAMPLE OF STEALTHY MIRAI ATTACK ON A PYTHON-BASED MICROSERVICE.

Phase Attack steps Detection

Recon

["$EUID" -eq 0] && echo "root" ×
echo "$(</proc/self/status)" ×
echo "$(</sys/fs/cgroup/cpu/cpu.cfs_quota_us)" ×
echo "$(</sys/fs/cgroup/memory/memory.limit_in_bytes)" ×
echo "$(</proc/1/cmdline)" ×

Environment
Preparation

ulimit -n 65535 ×
echo '0' >/proc/sys/kernel/nmi_watchdog ×
echo SELINUX=disabled >/etc/selinux/config ×
export PATH=$(pwd):$PATH ×

Payload
Preparation

python -c "import urllib.request; urllib.request.urlretrieve('<mirai-url>', 'python')" ×
python -c "import os; os.chmod('python', 777)" ×

Execution python ✓

TABLE VIII: DETECTION PERFORMANCE AGAISNT EVASION.

Reconnaissance Environment Prep. Payload Prep. Execution

0% 0% 66.72% 100.00%

overall detection rate of 66.72%. In the final execution phase, PRO-
CATCH achieves a 100% detection rate. Even when the attacker as-
signs a benign name to the payload (e.g., python), the executable
remains distinguishable due to differences in its absolute path and
inode metadata, both of which are monitored by PROCATCH. More-
over, the execution of certain payloads introduce additional observ-
ables. For example, xmrig-based cryptominers invoke uncommon
executables such as /sbin/modprobe to load the MSR kernel
module for CPU-specific optimizations, while Kinsing executes
/usr/bin/getconf as part of its environment profiling.

Overall, while techniques such as shell built-ins and in-line
execution enable partial evasion in earlier stages, PROCATCH
reliably detects the attack during the execution phase. However, our
findings are specific to the stealthy attack implementations used in
our evaluation. We acknowledge that more evasive variants—such
as payloads written entirely in Python or Node.js using only built-in
libraries—may evade detection in some microservices. Nonetheless,
by monitoring unavoidable execution-level artifacts, PROCATCH
imposes meaningful constraints on the attacker, making stealthy
execution non-trivial.

VI. DISCUSSION

Despite effectively detecting attacks. PROCATCH is not exempt
from limitations.

Rare bookkeeping activities. Microservices are narrowly scoped,
typically running a single workload to fulfill their role. However,
operations such as DevOps tasks (e.g., execing into a pod for debug-
ging) can introduce anomalous artifacts, triggering false positives.

Timing attacks during initialization. As shown in Section V, our
approach establishes a baseline for a pod before transitioning to
active monitoring within a short timeframe (≈ 0.4s for a single pod).
Theoretically, an attacker could exploit the brief latency to execute
malicious activities. However, this remains highly impractical as
the attacker cannot predict pod scheduling or precisely time the

attack during this short window. Yet, this can be mitigated by
implementing a restrictive NetworkPolicy to block traffic
temporarily after the pod is ready, further reducing this risk.

Baseline inclusion of attack-enabling utilities. Since our approach
captures a baseline of execution attributes at the PodReady time-
point, certain system utilities (e.g., chmod) may be included if they
remain active within the container’s cgroup at that moment. While
uncommon in microservices—where initialization typically com-
pletes before readiness—this poses a risk: once included in the base-
line, these utilities can later be abused without triggering detection.

Non-execution-based attacks. Our approach does not detect
non-execution attacks (e.g., directory traversal), where the adversary
interacts with the application externally without deploying payloads
or invoking binaries. Detecting such attacks falls outside our
scope and requires complementary mechanisms, such as a web
application firewall (WAF) capable of inspecting HTTP(S) traffic.

VII. RELATED WORK

Anomaly-based solutions. Most container monitoring solutions
rely on syscalls to detect anomalies. For example, CDL [13]
monitors syscall frequency and flags abnormal spikes. CHIDS [14]
enhances detection by combining machine learning with graph-
based modeling to analyze syscall frequency and argument
patterns among other works. While these solutions capture
malicious activity, they require frequent retraining to maintain
performance. REPLICAWATCHER eliminates the need for training
by comparing replicas for anomalies. However, it is not applicable
for single-instance deployments and does not align with the speed
of modern container threats.

Rule-based solutions. Several container security tools, including
Falco and Trace [6], [28], [56], rely on IoCs to create their detection
rulesets. While effective against known threats, they fail to detect
novel attacks. Also, translating IoCs into rule syntax requires
time and expertise, often lagging behind the evolving threat land-
scape [18]. Moreover, certain rules are broad, leading to excessive
false positives and alert fatigue, which in turn necessitates fine-
tuning — a time-consuming process that is difficult to scale [18].

VIII. CONCLUSION

In this paper, we presented PROCATCH, a training-less, real-time,
and setup-agnostic approach to execution-based anomaly detection
in containerized microservices. Our solution leverages the inherent
design of containerized microservices and continuously monitors
their stable execution behavior for disruptions indicative of
malicious activity. PROCATCH achieves 99.77% precision and
100% recall on average, detecting container attacks with effective
lead time, making it practical for microservices environments.

ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable comments
to improve our paper. We also thank Dr. Holger Dreger and Dr.
Marco Caselli from Siemens AG for their support and for providing
the computing infrastructure used in this study. This work is sup-
ported by the SeReNity project, Grant No. cs.010, funded by Nether-
lands Organisation for Scientific Research (NWO). Any views,
findings, or conclusions expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and Jim Hao Chen. Automatic
policy generation for inter-service access control of microservices. In
Proceedings of the USENIX Security Symposium, 2021.

[2] Osowski Rick. Containers and microservices — a perfect pair. https://developer.
ibm.com/tutorials/cl-ibm-cloud-microservices-in-action-part-2-trs/, 2021.

[3] Cloud Native Computing Foundation. Cloud Native 2024. https://www.cncf.
io/wp-content/uploads/2025/04/cncf annual survey24 031225a.pdf, 2024.

[4] Chierici Stephano. Cloud Lateral Movement: Breaking in through a Vulnerable
Container. https://sysdig.com/blog/lateral-movement-cloud-containers/, 2022.

[5] Dougla Nigel. Ephemeral Containers and APTs. https:
//sysdig.com/blog/ephemeral-containers-and-apts/, 2024.

[6] Sysdig. Falco: container native runtime security. https://falco.org/, 2022.
[7] Aquasec. Aqua tracee: Runtime ebpf threat detection engine.

https://www.aquasec.com/products/tracee/.
[8] Dirk Merkel. Docker: lightweight linux containers for consistent development

and deployment. Linux journal, 2014(239):2, 2014.
[9] Kubernetes. Production-grade container orchestration.

[10] Kubernetes. Restrict a Container’s Syscalls with seccomp.
https://kubernetes.io/docs/tutorials/security/seccomp/.

[11] Kubernetes. Configure a Security Context for a Pod or Container.
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/.

[12] Ian Edwards. Compendium of container escapes. In Black Hat USA, 2019.
Accessed: 2024-10-30.

[13] Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu. CDL: Classified
Distributed Learning for Detecting Security Attacks in Containerized
Applications. In Proceedings of Annual Computer Security Applications
Conference (ACSAC), 2020.

[14] Asbat El Khairi, Marco Caselli, Christian Knierim, Andreas Peter, and Andrea
Continella. Contextualizing System Calls in Containers for Anomaly-Based
Intrusion Detection. In Proceedings of the Cloud Computing Security
Workshop (CCSW), 2022.

[15] Asbat El Khairi, Marco Caselli, Andreas Peter, and Andrea Continella.
Replicawatcher: Training-less anomaly detection in containerized
microservices. In Network and Distributed System Security Symposium, NDSS
2023. Association for Computing Machinery, 2024.

[16] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han
Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, et al. Anomaly detection
in the open world: Normality shift detection, explanation, and adaptation.

[17] Kubernetes. Horizontal Pod Autoscaling. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/, 2024.

[18] Sysdig. Automated falco rule tuning. https://sysdig.com/blog/falco-rule-
tuning/.

[19] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. Promises and
challenges of microservices: an exploratory study. Empirical Software
Engineering, 26(4):63, 2021.

[20] Sysdig. Preventing container runtime attacks with Sysdig’s Drift Control.
https://sysdig.com/blog/preventing-runtime-attacks-drift-control/, 2022.

[21] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel: from
I/O ports to process management. ” O’Reilly Media, Inc.”, 2005.

[22] Istio. Bookinfo Application. https://istio.io/latest/docs/examples/bookinfo/.
[23] Phil Winder Ian Crosby, Alex Giurgiu. Sock Shop : A Microservice Demo

Application. https://github.com/microservices-demo/microservices-demo.
[24] Cedric Ziel Steve Waterworth. Sample Microservice Application.

https://github.com/instana/robot-shop.
[25] Cisco. Martian Bank. https://github.com/cisco-open/martian-bank-demo.
[26] Oracle Cloud Infrastructure. Mushop. https://github.com/oracle-quickstart/oci-

cloudnative.
[27] An industry-standard container runtime with an emphasis on simplicity,

robustness and portability.
[28] Sysdig. Secure DevOps Platform. https://github.com/draios/sysdig.
[29] Locust. Locust: An open source load testing tool. https://locust.io/.
[30] Selenium. Selenium automates browsers. That’s it

https://www.selenium.dev/.
[31] Curl. Curl. https://curl.se/.
[32] Kubernetes. Kubernetes documentation - kubelet. https:

//kubernetes.io/docs/reference/command-line-tools-reference/kubelet/.
[33] Kubernetes. Pod Lifecycle. https://kubernetes.io/docs/concepts/workloads/

pods/pod-lifecycle/, 2024.
[34] Sysdig. Sysdig 2023 Cloud-Native Security and Usage Report.

https://sysdig.com/2023-cloud-native-security-and-usage-report/, 2023.
[35] Rami Rosen. Namespaces and cgroups, the basis of linux containers. Seville,

Spain, Feb, 2016.
[36] Douglas Nigel. Falco vs. Sysdig OSS: Choosing the right tool for the job.

https://sysdig.com/blog/falco-vs-sysdig-oss/, 2024.
[37] Sysdig. Falco Feeds by Sysdig Empowers Companies to Harness Open

Source Security at Enterprise Scale. https://sysdig.com/press-releases/falco-
feeds-by-sysdig/.

[38] Google Cloud Platform. Google Online Boutique. https:
//github.com/GoogleCloudPlatform/microservices-demo.

[39] Google Cloud. Bank of Anthos. https://github.com/GoogleCloudPlatform/
bank-of-anthos.

[40] Amazon AWS. Retail Demo Store. https://github.com/aws-samples/retail-
demo-store.

[41] Azure. AKS Store Demo. https://github.com/Azure-Samples/aks-store-demo.
[42] Sysdig. Zoom into Kinsing. https://sysdig.com/blog/zoom-into-kinsing-

kdevtmpfsi/, 2020.
[43] Sysdig. Malware analysis: Hands-On Shellbot malware.

https://sysdig.com/blog/malware-analysis-shellbot-sysdig/, 2021.
[44] Sysdig. THREAT ALERT: Crypto miner attack – Sysrv-Hello Botnet targeting

WordPress pods. https://sysdig.com/blog/crypto-sysrv-hello-wordpress/, 2021.
[45] NVD. DDoS-as-a-Service: The Rebirth Botnet. https://sysdig.com/blog/ddos-

as-a-service-the-rebirth-botnet/, 2024.
[46] Asaf Eitani Assaf Moragn. Threat Alert: New Malware in the Cloud By

TeamTNT. https://www.aquasec.com/blog/new-malware-in-the-cloud-by-
teamtnt/, 2022.

[47] Nitzan Yaakov. Tomcat Under Attack: Exploring Mirai Malware and Beyond.
https://www.aquasec.com/blog/tomcat-under-attack-investigating-the-mirai-
malware/, 2023.

[48] Sysdig. SCARLETEEL: Operation leveraging Terraform, Kubernetes, and
AWS for data theft. https://sysdig.com/blog/cloud-breach-terraform-data-
theft/.

[49] Lucifer DDoS botnet Malware is Targeting Apache Big-Data Stack ,
author=Nitzan Yaakov, year=2024, howpublished=https://www.aquasec.com/
blog/lucifer-ddos-botnet-malware-is-targeting-apache-big-data-stack/.

[50] Miguel, Hernández. LABRAT: Stealthy Cryptojacking and Proxyjacking
Campaign Targeting GitLab. https://sysdig.com/blog/labrat-cryptojacking-
proxyjacking-campaign/.

[51] Ofek, Itach and Assaf, Morag. TeamTNT Reemerged with New Aggressive
Cloud Campaign. https://www.aquasec.com/blog/teamtnt-reemerged-with-
new-aggressive-cloud-campaign/.

[52] Kumar Rajesh. What is Pause container in Kubernetes
https://www.devopsschool.com/blog/what-is-pause-container-in-kubernetes/.

[53] Sysdig. Sysdig 2023 cloud-native security and usage report. pages 1–29, 2023.
[54] gRPC. A high performance, open source universal RPC framework.

https://grpc.io/.
[55] Jason Andres. Exploring syscall evasion – linux shell built-ins.
[56] Aquasec. We Stop Attacks on Cloud Native Applications.

https://www.aquasec.com/.

