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Abstract. While detection and response are essential components of
container runtime security, this reactive approach depends on the timely
and accurate classification of threats to trigger mitigation. This depen-
dency introduces unavoidable delays in the response path, creating a
window of opportunity for adversaries to escalate privileges or pivot lat-
erally across the cloud environment. These limitations underscore the
need for a proactive hardening mechanism that reduces the container’s
execution surface before it is compromised. While existing hardening
mechanisms enforce security-relevant constraints, their effectiveness re-
mains inherently tied to specific deployment configurations and does not
generalize across diverse setups. Moreover, their dependence on prior
knowledge of container behavior makes them ill-suited for dynamic mi-
croservices, where frequent rollouts invalidate baselines and introduce
substantial maintenance overhead.
In this work, we present ConLock, a hardening mechanism that gener-
alizes across diverse deployment setups and requires no prior knowledge
of container behavior. Our key insight is that containerized microser-
vices, consistent with the single-concern principle, execute a single, task-
specific binary throughout their lifetime. In contrast, adversaries violate
this model by invoking additional executables—typically pre-packaged
within the container image—to carry out malicious actions. At its core,
ConLock identifies the main binary at startup and purges all non-
essential executables from the container’s runtime filesystem, thereby
preventing unauthorized code execution. We evaluate ConLock on five
microservices-based applications maintained by major cloud vendors and
21 container attack scenarios derived from publicly available exploits.
ConLock achieves a 99.57% attack prevention rate with zero false posi-
tives. Moreover, it operates without in-container instrumentation or sys-
tem call hooking, incurring minimal performance overhead.

1 Introduction

Microservices are widely adopted for developing scalable and maintainable cloud
applications. By decomposing functionality into isolated services, they enable
modular development, fault tolerance, and flexible scaling [1]. Containers serve
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as the preferred runtime for microservices, offering lightweight execution, rapid
startup, and consistency across environments [2]. Their integration with orches-
tration platforms such as Kubernetes3 has led to widespread adoption across
cloud infrastructure. Thus, containerized microservices now underpin a majority
of production systems, forming a critical part of cloud-native applications [3].

As containerized microservices become popular, they have also become a fo-
cal point for adversaries. The inherent uniformity and predictability of container
environments, combined with advancements in AI, enable attackers to automate
and scale their operations with ease. Notably, container-based attacks can com-
plete key phases such as initial access, payload delivery, lateral movement, and
even container escape within minutes [4], often outpacing existing detection and
response mechanisms. This growing asymmetry highlights the need for security
measures that act earlier in the attack chain, before malicious code can execute.

Container security efforts across both industry and academia have predomi-
nantly focused on detection. Industry tools such as Falco [5] and Tracee [6] rely
on kernel-level heuristics to identify suspicious activity at runtime. In the aca-
demic domain, a variety of approaches have explored anomaly detection through
system call (syscall) analysis. CDL [7] monitors syscall frequencies and flags ab-
normal spikes. Stide-BoSC [8] uses sliding n-gram windows to model short syscall
sequences, detecting attacks via sequence mismatches. CHIDS [9] enhances ex-
pressiveness by constructing graph-based representations of container behavior,
incorporating syscall arguments and execution context. More recently, Repli-
caWatcher [10] moves away from static baselines, instead comparing replicas at
runtime and flagging behavioral inconsistencies as potential compromises.

While existing solutions have advanced threat detection in containerized envi-
ronments, their ability to mitigate attacks remains fundamentally limited. Many
detection systems generate alerts without actionable context, leaving security
teams with limited guidance during triage. Even with access to enriched contex-
tual data, response mechanisms—whether automated or operator-driven—are
inherently reactive, initiated only after adversarial activity has been observed.
This reactive posture introduces operational latency that conflicts with the fast-
paced execution model of containerized environments, where attacks can advance
through critical stages in seconds. These limitations necessitate proactive run-
time hardening that defines strict execution boundaries and blocks unauthorized
executions at runtime.

Container runtime hardening is commonly enforced through three comple-
mentary mechanisms: mandatory access control (MAC), syscall filtering, and
filesystem immutability. MAC frameworks such as AppArmor [11] enforce path-
based policies that constrain access to files, network resources, and Linux capa-
bilities. Seccomp[12] enables syscall filtering by defining a whitelist of allowed
syscalls, thereby limiting the container’s interaction with kernel-level functional-
ity. Filesystem immutability, typically enforced via a read-only root filesystem[13],
prevents write operations within the container’s root filesystem during runtime.

3 https://kubernetes.io/
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While these mechanisms operate at different layers of the container stack and
reduce the attack surface, they suffer from three fundamental limitations. First,
they are prone to deployment fragility under over-permissive configurations. Con-
tainers running in privileged mode execute in an unconfined context, rendering
mechanisms such as Seccomp and AppArmor ineffective. Moreover, privileged
access allows remounting the root filesystem as writable, bypassing read-only re-
strictions. Second, they exhibit semantic gaps. Even without elevated privileges,
attackers can abuse memory-backed filesystems (e.g., tmpfs) to execute payloads
entirely in memory, evading read-only filesystem protections. Moreover, Seccomp
and AppArmor profiles often permit syscalls and capabilities required for benign
functionality, some of which can be repurposed for malicious use. Third, they de-
pend on prior knowledge of legitimate behavior. Seccomp and AppArmor require
workload-specific profiles (e.g., whitelisted syscalls), while enforcing a read-only
filesystem requires pre-identifying application-specific writable paths and mount-
ing ephemeral volumes accordingly. These requirements introduce non-trivial
maintenance overhead that becomes increasingly burdensome in fast-evolving
microservice environments.

In contrast to these solutions, we propose a novel hardening mechanism that
reduces the execution surface within containers. The approach builds on the ob-
servation that microservices typically execute a single long-lived binary through-
out their lifecycle, consistent with the single-responsibility principle [14]. Con-
versely, container-based attacks often rely on auxiliary binaries pre-installed in
the image (e.g., shells, download tools, and file manipulation utilities) to per-
form malicious actions [15]. By permitting only the long-lived binary identified at
startup and purging all auxiliary binaries, our mechanism eliminates a primary
avenue for post-startup compromise.

While this approach offers the advantage of remaining effective in privileged
setups, being resilient to evasion, and requiring no prior knowledge of container
behavior, its effectiveness hinges on limiting the execution surface without dis-
rupting essential initialization logic—commonly referred to as startup noise.

Startup noise. While containerized microservices are designed to run a single,
long-lived service binary, they often invoke short-lived auxiliary utilities dur-
ing initialization. These transient binaries are executed by entrypoint logic to
perform necessary environment setup tasks (e.g., configuring permissions, ini-
tializing filesystems, loading environment variables) before launching the main
application. Hence, enforcing execution-surface reduction prematurely can re-
move required binaries, causing startup failures and repeated container restarts.

To address this, we introduce ConLock, a hardening mechanism that en-
forces execution surface reduction by retaining only the main microservice binary
and removing access to all other executables. Our key observation is that, de-
spite transient startup noise, containerized microservices reliably converge to a
steady state in which only the long-lived binary remains active. ConLock iden-
tifies this convergence point at runtime and systematically purges all remaining
filesystem-resident executables, thereby eliminating auxiliary execution paths
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and preventing post-initialization binary invocation—a prevalent technique in
container-based attacks.
In summary, we make the following contributions:

– We introduce a novel container hardening technique based on execution sur-
face reduction, leveraging the observation that microservices consistently ex-
ecute a single, stable binary throughout their lifecycle.

– We implement this technique in ConLock, a lightweight prototype that re-
duces the execution surface at startup, without prior knowledge of container
behavior, syscall hooking, or in-container instrumentation.

– We evaluate ConLock across five representative microservices-based appli-
cations and 21 attack scenarios, showing that it consistently blocks attacks
with an average prevention rate of 99.57% without any false positives.

We make ConLock available at https://github.com/asbatel/conlock.

2 Motivation

While reliance on prior knowledge of container behavior is a well-known limita-
tion of existing hardening mechanisms, this section presents two realistic con-
tainer attack scenarios that highlight their deployment fragility and semantic
gaps. We focus on the two most widely used hardening techniques in practice:
Seccomp and read-only filesystems.

2.1 Deployment Fragility

Scenario. Consider a pod4 named Shipping, running a Java-based microservice
vulnerable to remote code execution (RCE). The pod is configured with a read-
only root filesystem and has Seccomp enabled, but operates in privileged mode,
a misconfiguration widely observed in real-world deployments [16,17].
Attack description. Figure 1 illustrates the attack scenario. The attacker be-
gins by verifying that the pod’s root filesystem is mounted as read-only and
confirms the presence of elevated privileges by inspecting the effective capability
bitmask. Exploiting the privileged mode, the attacker remounts the root filesys-
tem with write permissions, fetches a Dirty Pipe exploit from a remote server,
modifies its permissions to enable execution, and executes the payload, resulting
in unauthorized access to the underlying host’s /etc/passwd file.
Limitations of existing controls. Despite Seccomp being enabled and the
root filesystem mounted as read-only, the pod operates in privileged mode—a
configuration that disables Seccomp confinement and permits remounting the
root filesystem as writable, thereby bypassing immutability enforcement. Con-
sequently, arbitrary code execution remains feasible even in the presence of pre-
ventive security mechanisms.
4 In Kubernetes, a pod may consist of one or more containers.

https://github.com/asbatel/conlock
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# check mounts
shipping:/# cat /proc/mounts
overlay / overlay ro,relatime,lowerdir=/var/lib/..
# list capabilities
shipping:/# cat /proc/self/status
CapPrm: 0000003fffffffff
# mount filesystem as writable
shipping:/# mount -o remount,rw /
# download diretypipe payload and execute it
shipping:/# wget http://<attacker-IP>/dirtypipe
shipping:/# chmod +x dirtypipe
shipping:/# ./dirtypipe /etc/passwd

Fig. 1: Pod to node escape via Dirty Pipe [18].

2.2 Semantic Gaps

Scenario. Consider a pod named Cart, running a PHP-based application vul-
nerable to remote code execution (RCE). The pod is configured as non-privileged,
with a read-only root filesystem and Seccomp enabled. However, the pod runs as
root (i.e., UID 0)—a common default inherited from base images and frequently
seen in production deployments [19].

Attack description. As illustrated in Figure 2, given that both Seccomp and
the read-only filesystem security feature remain enforced in this setup, the at-
tacker changes the working directory to /dev, and uses it to stage and execute the
Scarleteel malware. This allows scanning for exposed credentials and secrets,
ultimately enabling lateral movement within the cluster.

# change directory to /dev and execute malware
cart:/# cd /dev
# download scarleteel payload and execute
cart:/dev# wget http://<attacker-IP>/scarleteel
cart:/dev# chmod +x scarleteel
cart:/dev# ./scarleteel

Fig. 2: Scarleteel [20] execution.

Limitations of existing controls. Even in non-privileged configurations, at-
tackers can bypass existing hardening controls. Although the root filesystem is
mounted as read-only, writable paths remain, such as /dev, which is a tmpfs
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mount provisioned by the container runtime. This memory-backed region en-
ables the attacker to download and execute malicious payloads without altering
the immutable root filesystem. While fine-grained Seccomp profiles can reduce
the syscall attack surface, they remain susceptible to abuse through legitimate
application behavior. Specifically, during initialization, the Cart microservice
executes syscalls such as execve to launch apache2-foreground, chmod to ad-
just file permissions, and network-related syscalls such as socket, connect, and
recvmsg to retrieve configuration and initialize services. While these syscalls are
legitimate and permitted by the active Seccomp profile, they are later repur-
posed by the attacker to fetch, prepare, and execute malware. Consequently, the
malicious activity proceeds without triggering any policy violations.

We address this gap with a hardening mechanism that remains effective under
elevated privileges, withstands evasion techniques, and operates without prior
knowledge of container behavior. ConLock identifies the primary microservice
binary during startup and determines when the container reaches a steady execu-
tion state. At that point, it purges all remaining filesystem-backed executables. In
our attack scenarios, ConLock identifies /usr/sbin/php and /usr/sbin/java
as the active binaries for the Cart and Shipping microservices, respectively,
and eliminates all others from the pod’s filesystem, rendering the execution of
auxiliary binaries at runtime infeasible.

We emphasize that the attack scenarios discussed in this section are not
synthetic, but rather reflect realistic container compromises, reproduced from
publicly available proof-of-concept (PoC) exploits and grounded in common
misconfigurations observed in real-world deployments [17]. Moreover, our ex-
periments in Section 6 show that existing hardening mechanisms fail to block
additional post-compromise techniques, underscoring the need for a more robust,
deployment-agnostic hardening approach like ours.

3 Preliminary Assessment

To assess the feasibility of execution surface reduction, we conduct a two-part
preliminary study. First, we analyze the execution characteristics of pod attacks
to determine whether adversaries invoke binaries beyond the main microservice
binary. Second, we examine pod startup behavior to identify a convergence point
in the lifecycle at which the execution surface stabilizes, enabling the safe en-
forcement of binary purging without disrupting initialization activity.

3.1 Understanding Pod Attacks

Pod-based attacks commonly involve code execution within the pod to carry
out malicious actions [21]. We classify these attacks into three categories: initial
access, where the adversary establishes a foothold inside the pod; in-pod attacks,
which remain confined to the pod while abusing internal resources or exfiltrating
data; and escape-based attacks, which attempt to break isolation and access the
underlying host system. Based on publicly available PoC exploits observed in
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the wild, we select five attacks: one representative of initial access and two from
each of the remaining categories. We analyze how each attack interacts with the
pod runtime, with particular emphasis on the executed binaries.

As shown in Table 1, pod attacks routinely depend on auxiliary binaries
prepackaged in the container image. Initial access is typically achieved through
shell-based vectors, resulting in the execution of shell interpreters (e.g., /bin/sh).
In subsequent stages, attacks such as Lucifer and Kinsing, known for crypto-
jacking and DDoS activity, invoke binaries such as wget to retrieve remote pay-
loads and chmod to enable execution. Some rely on binaries such as tar or apt
to unpack archives or install additional components. Escape-based attacks, in
addition to reusing the same primitives, frequently invoke system-level utilities
such as mount to manipulate namespaces and break isolation. These examples
demonstrate that pod attacks consistently rely on auxiliary binaries present in
the container environment, reinforcing the effectiveness of binary purging as a
defense. While our analysis covers a few attacks, the evaluation in Section 6
confirms that this reliance persists across a broader range of attacks.

Table 1: Binaries Invoked in Pod Attacks. Download: fetch tools (e.g., curl);
Permission: access control utilities (e.g., chmod); System: general-purpose tools
(e.g., ps, mount); Filesystem: file and directory manipulation tools (e.g., mkdir);
Shell Interpreter: command-line shells (e.g., sh, bash).
Category Attack Types of Binaries

Download Permission System Filesystem Shell Interpreter

Initial Access Shell Access ◦ ◦ ◦ ◦ •

In-pod Lucifer • • ◦ • •
Kinsing • • • • •

Escape Dirty Pipe • • • ◦ •
CVE-2022-0492 ◦ • • • •

3.2 Analysis of Pod Startup Behavior

Although microservices typically execute a single long-lived binary, pods of-
ten invoke short-lived setup utilities during initialization to perform essential
tasks such as permission adjustments, environment configuration, and health
checks. These transient executions are critical to correct startup behavior and
must not be disrupted. We analyze startup behavior across several representa-
tive microservices-based applications to identify a reliable enforcement point for
safely applying execution surface reduction.
Experiment setup. We conduct our preliminary analysis on three representa-
tive microservices-based applications: BookInfo[22], Sock-shop[23], and Mu-
shop[24]. Collectively, these applications comprise over 20 microservices built
with diverse languages, frameworks, and execution environments, forming a rep-
resentative basis for our analysis. All applications are deployed on a single-node
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Kubeadm[25] cluster running Ubuntu 24.04.1 LTS, with containerd [26] as the
underlying container runtime. We ran each application continuously for six hours
under realistic workload conditions. To simulate user interactions and drive typ-
ical microservice behavior, we automated traffic generation using Selenium [27],
Locust [28], and Curl [29]. Throughout execution, we monitored each microser-
vice from initialization to steady state, capturing all executable invocations by
tracing the execve and execveat syscalls. We collected these execution traces
using Sysdig [30], a widely used syscall tracing tool.
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Fig. 3: Execution Patterns in Microservices Over Time.

Table 2: Time Gap Between Main Binary Execution and PodReady.
(Min–Max per Application).

Application Min Duration Max Duration

Bookinfo 0.062s 0.171s
Sock-shop 0.092s 179.141s
Mu-shop 0.147s 28.185s

As shown in Figure 3, all microservices exhibit a consistent and structured
startup sequence. Execution begins with the container runtime, typically runc[31],
which creates and manages the container process, followed by the launch of the
pause binary—a minimal, long-running process deployed by Kubernetes to hold
the pod’s network and IPC namespaces[32]. After this initialization, a short
burst of auxiliary binaries is invoked, typically by image-level entrypoint scripts
to prepare the pod runtime environment. These include shell interpreters and
core utilities used for environment setup, filesystem configuration, and system
checks. Notably, the main microservice binary is launched at the end of this
transient phase, after which no further binaries are invoked, indicating that the
pod has reached a stable execution state.
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While the main binary’s execution signals the end of initialization, detect-
ing this boundary via syscall tracing is intrusive and unsuitable for production.
To provide lightweight and externally observable enforcement points, we instead
rely on Kubernetes lifecycle signals. Specifically, we use the PodReady condi-
tion [33], which is set once the pod passes its readiness checks. As shown in
Table 2, the PodReady timestamp consistently follows the launch of the main
microservice binary, reflecting the expected ordering where initialization com-
pletes before the pod is marked ready to serve traffic. Notably, the delay be-
tween binary execution and readiness assertion varies considerably—from mil-
liseconds to several minutes—depending on readiness probe configurations such
as the initialDelaySeconds parameter in the pod specification. To address
cases with minimal delay, security teams may optionally introduce a short en-
forcement grace period, ensuring execution-surface reduction does not interfere
with residual initialization activity.

4 Threat Model

We target microservices-based pods deployed in Kubernetes, where each mi-
croservice adheres to the single-responsibility principle and executes a single,
well-defined task. We exclude microservices instrumented with monitoring agents,
sidecars, or runtime hooks, as these introduce auxiliary executables that violate
the assumption of a minimal and stable execution context central to the mi-
croservice model.

We aim to prevent unauthorized code execution within the pod, whether trig-
gered during initial access (e.g., spawning a shell via a remote code execution
vulnerability) or during post-compromise phases involving auxiliary binaries for
malware deployment or pod escape. Although attackers could theoretically ex-
ploit memory corruption to issue malicious syscalls without invoking binaries,
we exclude such cases from our threat model. Contemporary microservices are
predominantly implemented in memory-safe languages (e.g., Go, Java, Python)
that mitigate low-level vulnerabilities, making memory corruption-based attacks
uncommon in practice. We further assume trusted container images at deploy-
ment, excluding supply chain attacks with pre-injected malicious binaries.

Our system is a startup-time hardening mechanism that prevents unautho-
rized execution by purging all executables other than the main microservice
binary in containerized microservices. It operates entirely outside the container,
requiring no in-pod instrumentation, syscall hooking, or kernel-level modifica-
tions. We enforce execution-surface reduction at the PodReady state, before the
application serves traffic, thereby ensuring adversaries inside the pod cannot
interfere with the surface reduction process.

5 Approach

We present ConLock, a startup-phase hardening mechanism that prevents
unauthorized code execution in containerized microservices. The approach is
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ConLock

“status”:
  “conditions”: [ {
    "status": "True",
    "type": "Ready" } ]

 Main Binary Lookup

main-bin 

kube-api 

Pod
Container

Root Filesystem

Procfs

 RootFS Lookup

containerd

 Binary Removal

Container
Root Filesystem

containerd

A- Startup Profiling B- Surface Reduction

 Worker Node

Pod
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Fig. 4: ConLock Overview. At the PodReady state, we removes all filesystem-
based binaries except the identified main microservice binary, making it infeasi-
ble to execute any auxiliary binaries.

motivated by two key observations: (1) microservices typically execute a single
long-running binary as their core application logic [34,14], and (2) pod-based
attacks commonly involve code execution, relying on auxiliary binaries prepack-
aged in the pod environment [21,15]. Motivated by these observations, ConLock
enforces execution surface reduction as a startup-phase hardening mechanism.

Figure 4 shows the architecture of ConLock, which operates in two phases:
( A ) startup profiling and ( B ) execution-surface reduction. In the profiling
phase, ConLock tracks the pod lifecycle to detect readiness and identify the
primary long-lived binary. Once the pod reaches the PodReady state, ConLock
removes all remaining filesystem-resident binaries, retaining only the identified
main binary. This eliminates auxiliary execution paths and prevents unautho-
rized code execution.

5.1 Startup Profiling

Informed by our preliminary assessment, the PodReady signal consistently marks
the end of the initialization phase, after which no auxiliary binaries are executed.
This transition provides a reliable and externally observable enforcement point
for execution surface reduction. In its first phase, ConLock performs two key
tasks: verifying pod readiness and identifying the main microservice binary.
Readiness Check. ConLock determines pod readiness by querying the Ku-
bernetes control plane and inspecting pod status conditions via the API server.
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Specifically, it checks whether the PodReady condition is set to True, indicating
that the pod has passed its readiness checks and is ready to serve traffic.
Main Binary Lookup. Once readiness is confirmed, ConLock identifies the
pod’s primary executable through container-level introspection. It first extracts
the container ID, then queries the container runtime via the Container Runtime
Interface (CRI) [35], which exposes metadata over gRPC [36]. Using this meta-
data, ConLock retrieves the container’s main process ID (PID) and resolves
the absolute path of the running executable by dereferencing the symbolic link
at /proc/<PID>/exe. This path reliably corresponds to the long-lived binary
that remains active throughout steady-state execution.

5.2 Surface Reduction

After confirming pod readiness and identifying the main binary, ConLock tran-
sitions to the surface reduction phase. In this stage, ConLock removes auxiliary
executables from the pod’s environment, retaining only the primary binary re-
quired for core functionality. This process involves two steps: (1) resolving the
container’s root filesystem path from the host, and (2) pruning non-essential
binaries to minimize the pod’s execution surface.
Root Filesystem Lookup. ConLock begins by resolving the container ID of
the target pod and locating its merged root filesystem under /run/containerd/
io.containerd.runtime.v2.task/k8s.io/<containerid>/rootfs. This path
is exposed by containerd as part of its task supervision infrastructure: for each
container, containerd maintains a mount namespace and projects the container’s
merged root filesystem to the host to support lifecycle operations such as check-
pointing and debugging [37]. ConLock leverages this host-visible path to access
the container’s complete runtime view, enabling lightweight and accurate surface
execution reduction without relying on in-pod instrumentation.
Binary Removal. With access to the pod’s full root filesystem, ConLock
performs targeted pruning of the execution surface by removing unnecessary
binaries. It begins by parsing shell configuration files (e.g., /etc/profile) to
extract directories listed in the command search path ($PATH), which typically
contain auxiliary binaries bundled with the base image. ConLock then traverses
each of these directories and removes all executable files, excluding the previously
resolved main binary. This selective removal eliminates latent execution vectors
while preserving the pod’s intended functionality.

6 Evaluation

We developed ConLock as a lightweight shell-based tool and evaluated its ef-
fectiveness across a range of pod attack scenarios. Our analysis includes com-
parisons with existing security mechanisms such as Seccomp and the read-only
filesystem security feature, as well as measurements of execution time under re-
alistic workloads to demonstrate its practicality in microservices environments.
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6.1 Experimental setup.

Table 3: Pod Attack Scenarios.

Category Attack Scenario Application

Initial Access Shell Access

Google Online Boutique
Bank-of-Anthors
AKS Store
Retail Store
Martian Bank

In-pod Attacks

Sysrv-Hello [38] Google Online Boutique
Kinsing [39] Google Online Boutique
RebirthLtd [40] Bank-of-Anthors
Kangaro [41] Bank-of-Anthors
Shellbot [42] AKS Store
Mirai [43] AKS Store
SCARLETEEL [20] Retail Store
Lucifer [44] Retail Store
LABRAT [45] Martian Bank
TeamTNT [46] Martian Bank

Pod Escape
Attacks

CVE-2022-0492 Google Online Boutique
Core_Pattern Abuse Google Online Boutique
Kernel Module Injection Bank-of-anthors
Device Handler Abuse Bank-of-Anthors
Host_PID Abuse AKS Store
Host_NET Abuse AKS-Store
Host Process Debugging Retail-Store
Host_FS Mount Retail Store
CVE-2016-5195 Martian Bank
CVE-2019-5736 Martian Bank

Experimental setup. We evaluate ConLock on five representative microser-
vices applications maintained by major cloud vendors and used in recent re-
search [10,52]. These applications feature polyglot architectures spanning multi-
ple languages and frameworks (e.g., Node.js, Java, Python, Go), and collectively
comprise 33 microservices, as detailed in Table 4. This diversity allows us to eval-
uate ConLock across heterogeneous runtime environments. All applications are
deployed on a single-node kubeadm cluster with 16 GB of RAM, running Ubuntu
20.04.6 LTS and containerd.

We evaluate ConLock under two operational modes: normal and adversar-
ial. In normal mode, we simulate realistic user activity to drive typical microser-
vice behavior. For applications with built-in workload drivers such as Google
Online Boutique’s loadgenerator [47], we use them directly. For the remain-
ing applications, we employ a combination of Locust and a custom Selenium-
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Table 4: Evaluated Microservices-based Applications.

Name # of microservices Polyglot Maintainer

Google Online Boutique [47] 10 ✓ Google Cloud
Bank-of-Anthors [48] 6 ✓ Google Cloud
AKS Store [49] 5 ✓ Microsoft Azure
Retail Store [50] 5 ✓ Amazon AWS
Martian Bank [51] 8 ✓ Cisco

Initial Access In-pod Attacks Pod Escape Attacks
100
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Fig. 5: Assessment of ConLock Performance.

based autoclicker to generate continuous, user-like traffic. This ensures represen-
tative and sustained workloads across all evaluated microservices. In adversarial
mode, we simulate pod attacks spanning initial access, in-pod execution, and
pod escape. We leverage publicly available PoC exploits [39,42] to reproduce
known techniques observed in real-world container intrusions [20]. These attack
scenarios are summarized in Table 3.

Evaluation dataset. In normal mode, each microservice is monitored contin-
uously over a ten-hour period. Since ConLock enforces execution restrictions,
we define false positives as any unintended disruption to benign behavior, mea-
sured in terms of pod crashes and restarts during this period. In attack mode,
conducted separately from normal monitoring, we execute 20 attack runs per
microservice, with one distinct attack scenario selected per application.

6.2 Performance Evaluation

Figure 5 presents the performance of ConLock across diverse attack scenarios
and microservices-based applications. Our approach achieves a 100% prevention
rate against both in-pod and pod escape attacks. These attacks consistently
depend on auxiliary binaries such as downloaders, permission modifiers, and



14 Asbat El Khairi, Andreas Peter, and Andrea Continella

system utilities to execute malicious behavior beyond the scope of the main mi-
croservice binary. By removing these binaries, ConLock effectively eliminates
such attack vectors. In contrast, ConLock achieves a 91.11% prevention rate for
initial access scenarios involving shell-based entry. The remaining 8.89% corre-
sponds to three microservices in the Bank of Anthos application—frontend,
contacts, and userservice—where the main binary is the shell interpreter
/usr/bin/dash. Because ConLock preserves this as the primary executable,
shell access remains possible post-initialization. Yet, the attack surface is sig-
nificantly reduced: without auxiliary binaries, the shell environment lacks the
tooling required for post-compromise operations. As a result, attackers are con-
strained to shell built-in commands, which offer limited capabilities [10], signif-
icantly reducing the impact of the compromise.

Importantly, ConLock incurs no false positives. Throughout ten hours of
continuous monitoring, all microservices executed without disruption, and no
container restarts were observed.

6.3 Comparison to Existing Hardening Mechanims

We compare ConLock against two widely adopted hardening techniques: read-
only filesystems and Seccomp. For the former, we configure pods to mount con-
tainer filesystems as read-only via the pod specification. For Seccomp, we gen-
erate a custom profile for each microservice by tracing syscalls over a three-hour
period under realistic workloads, collecting a whitelist of syscalls.

Read-only Filesystem. Figure 5 shows that read-only filesystem enforcement
provides only limited protection: it blocks write operations but does not restrict
code execution. In initial access scenarios, shell-based interaction remains unaf-
fected since it requires no writes. In escape attacks, adversaries leverage excessive
capabilities to remount the root filesystem as writable, nullifying the restriction.
For in-pod attacks, 52.16% are partially blocked, not because of execution control
but because attackers attempt to install auxiliary tooling via package managers,
which fail under read-only constraints due to their reliance on write operations
to internal state and cache directories. Notably, no false positives occur during
normal application execution.

Seccomp. As shown in Figure 5, Seccomp exhibits limited prevention capabili-
ties across the evaluated attack scenarios. In initial access cases, it fails to block
shell-based entry, as the execve syscall—responsible for spawning shells—is
typically permitted to support pod startup. In escape-based attacks, enforce-
ment remains largely ineffective due to the privileged access that allows unre-
stricted syscall execution. For in-pod attacks, Seccomp blocks 63.12% of in-pod
attacks due to their invocation of non-whitelisted syscalls. Although no false
positives were observed during evaluation, this outcome required a dedicated
three-hour training period per microservice to capture representative syscall ac-
tivity, highlighting the significant overhead involved in constructing reliable and
non-disruptive profiles.
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Fig. 6: Avg. execution time of ConLock across varying pod densities.

ConLock outperforms existing hardening mechanisms by leveraging a key
property of microservices: they execute on a single, long-lived binary. By preserv-
ing only this binary post-initialization, ConLock enforces execution surface re-
duction without training, in-pod instrumentation, or syscall hooking. Moreover,
its external enforcement at startup time ensures resilience against tampering
while preserving normal microservice functionality.

6.4 Execution Time

We assess ConLock’s execution time by measuring the duration required to
carry out its core stages: main binary lookup and execution surface reduction.
This includes container-level introspection to resolve the container’s process ID
and dereference the symbolic link /proc/<PID>/exe, followed by host-level ac-
cess to the container’s merged root filesystem and selective removal of auxil-
iary binaries. To reflect realistic deployment densities, we evaluate ConLock
across varying scales, from a single pod up to 40 pods, by replicating microser-
vices accordingly [53]. All experiments are conducted on a kubeadm worker node
equipped with an Intel Core i7-10850H CPU (4 cores, 2.7 GHz) and 16GB RAM.

ConLock ’s execution time is shaped by two key factors: the number of
active pods and the cost of per-pod introspection and filesystem modification.
For each pod, ConLock queries the Kubernetes API to assess readiness and re-
trieve container metadata, identifies the main binary through process-level intro-
spection, and performs execution surface reduction by accessing the container’s
merged root filesystem and removing auxiliary executables. Although these op-
erations introduce network and processing overhead, ConLock maintains low
latency even at high pod densities. Over 10 measurement runs, ConLock com-
pletes the full process—spanning pod readiness assessment, main binary iden-
tification, and execution surface reduction—in almost one second for a single
pod and approximately three seconds for 40 pods, as shown in Figure 6. These
results reflect ConLock ’s sublinear scaling behavior, underscoring its efficiency
even as pod count increases. Moreover, because all operations are confined to the
startup phase, ConLock introduces no overhead during steady-state execution,
making it highly practical for production environments.
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7 Discussion

Despite its effectiveness in preventing pod attacks, ConLock is not without
limitations.
Incompatibility with Instrumented Microservices. ConLock assumes
that microservices follow a single-responsibility execution model, where only
the main binary remains active post-initialization. However, some production
pods embed auxiliary executables (e.g., sidecar agents, configuration reloaders, or
custom health probes) that periodically execute binaries as part of their normal
operation. Enforcing strict execution immutability in these cases may disrupt
expected behavior, leading to functionality loss or instability.
Debugging and Incident Response. By design, ConLock restricts binary
execution once the pod reaches its ready state, effectively preventing ad-hoc
code execution. While this enforces a strong security posture, it can hinder op-
erational tasks such as debugging, live forensics, and incident remediation. As
a workaround, instead of permanently removing binaries for execution surface
reduction, security teams can mount an empty directory over executable paths
during startup, masking access. If runtime access is later required for debug-
ging or incident response, the original directories can be remounted on demand.
This approach preserves the security benefits while remaining reversible, yet it
introduces additional operational complexity.
Evasion Attacks. ConLock reduces the container’s attack surface by elimi-
nating auxiliary binaries, based on the assumption that malicious activity entails
spawning new executables. Yet, attacks that exploit memory corruption or trig-
ger remote code execution (RCE) within the address space of the main binary
can evade this restriction. We acknowledge that such in-memory evasions con-
stitute an inherent limitation of our approach.

8 Related Work

Runtime Hardening. Mechanisms such as Seccomp[12], AppArmor[11], and
the read-only filesystem security feature are commonly used to restrict pod be-
havior at runtime. However, they often break down in over-permissive config-
urations such as privileged pods or those granted excessive capabilities, where
enforcement becomes ineffective or is bypassed entirely. Even in constrained en-
vironments, these mechanisms rely on prior knowledge of container behavior.
Enforcing a read-only filesystem requires developers to anticipate all legitimate
write operations and explicitly configure ephemeral volumes. Similarly, applying
Seccomp and AppArmor demands that DevOps teams identify benign syscalls
and file access paths to avoid disrupting application functionality. While solu-
tions such as Confine [54] automate Seccomp policy generation, they still de-
pend on developer input, such as exec calls. In contrast, ConLock requires
no training or DevOps involvement. It infers enforcement boundaries directly
from observed startup behavior, enabling robust and adaptive execution surface
reduction across diverse deployment scenarios.
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Static Hardening. These techniques reduce the attack surface at build time
by minimizing dependencies and limiting available tooling. Common practices
include using minimal base images (e.g., Alpine), adopting multi-stage builds to
exclude development artifacts, and explicitly removing unnecessary system util-
ities in the Dockerfile. At the orchestration level, YAML-based configurations
such as setting restrictive securityContext fields (e.g., dropping Linux capa-
bilities, enforcing non-root execution, or disabling privilege escalation) further
constrain runtime behavior [55]. While these methods are effective when ap-
plied rigorously, they rely on DevOps discipline and consistent security hygiene
throughout the CI/CD pipeline. In contrast, ConLock performs runtime-driven
hardening without requiring any DevOps involvement. It enforces execution sur-
face reduction based on observed behavior after initialization, independent of
image composition or configuration settings.
Distroless Images. These images [56] reduce the attack surface by omitting
general-purpose tools such as shells, package managers, and other auxiliary bina-
ries from the base image. This static hardening strategy limits post-compromise
capabilities by depriving adversaries of commonly exploited utilities. However,
distroless images remain uncommon in production microservices due to opera-
tional limitations. In particular, the absence of a package manager complicates
dependency management, making it difficult to adapt images to evolving appli-
cation requirements [57]. In contrast, ConLock applies execution surface reduc-
tion dynamically at runtime, without requiring changes to image composition or
interfering with microservice logic.

9 Conclusion

We presented ConLock, a pod hardening mechanism that requires no prior
behavioral knowledge and generalizes across diverse deployment environments.
ConLock identifies the main microservice binary at startup and purges all non-
essential executables from the pod’s filesystem, depriving adversaries of aux-
iliary tooling commonly leveraged in post-compromise stages. Our evaluation
across representative microservices-based applications and diverse attack scenar-
ios shows that ConLock prevents 99.57% of attacks with zero false positives, all
without requiring prior knowledge of the pod or introducing significant overhead,
offering a practical and effective defense for containerized microservices.
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