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Abstract. Fuzzing is arguably one of the most effective software vulner-
ability discovery techniques. However, despite recent advances, fuzzing
stateful software suffers from severe inefficiencies and scalability limita-
tions. This hinders automated testing for software that relies on state
models, such as protocol implementations. Unlike stateless approaches,
efficient stateful fuzzers need to i) explore the state model of the target
system, ii) focus on the most interesting states, iii) track which messages
are interesting for each state, and iv) handle expensive restarts and syn-
chronizations of the system. In this paper, we present LibAFLstar, a
fast and state-aware protocol fuzzer that addresses the aforementioned
challenges leveraging i) partial message sequences, ii) a novel state sched-
uler, iii) state-aware queues and bitmaps, and iv) persistent mode. We
fine-tune our approach by running an extensive ablation study with more
than 20 configurations over six protocol implementations. Then, we eval-
uate LibAFLstar on the same protocol implementations (FTP, RTSP
and HTTP) for 24 hours. We compare LibAFLstar’s performance with
two state-of-the-art fuzzers: AFLNet and ChatAFL. Our experiments
show that LibAFLstar is more than 30× faster than competitors and
achieves, on average, 1.4× more coverage.

Keywords: Software Security · Software Testing · Fuzzing · Stateful
Systems· Network Protocols

1 Introduction

Fuzzing is a well-known technique for finding bugs in systems. The idea behind
fuzzing is simple: sending unexpected (e.g., malformed) messages to a System
Under Test (SUT) to trigger unexpected behaviour. Despite being introduced
more than 30 years ago, fuzzing has become very popular with the advent of
AFL [36] (and its re-implementation AFL++ [16]), a smart mutation-based
fuzzer highly effective at finding vulnerabilities in modern systems. In recent
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years, a plethora of fuzzers have been devised to target a variety of systems [8,
15, 30, 19], as surveyed in recent work [38, 23, 21, 13]. Nevertheless, AFL++ and
its descendant LibAFL [17] remain the best choice when it comes to fuzzing
stateless targets because of their speed and effectiveness.

Unfortunately, the effectiveness of AFL++ and generic smart mutation-
based fuzzers are often confined to stateless systems—systems that do not require
the implementation of a state model to function properly. Classical examples of
stateless systems are PDF readers, MP3 players, or image libraries.

When dealing with stateful systems, existing smart mutation-based fuzzers
are, unfortunately, not as effective. Stateful systems are characterized by a state
model. Typical examples include any client or server implementing network pro-
tocols, such as FTP, SSH, TLS, and 5G. In these systems, message sequences
(often called traces) play a crucial role, as unexpected traces may also expose vul-
nerabilities. Stateful fuzzing is much more challenging because of the difficulty
in tracking states and dealing with dependencies between messages, adding a
further layer of complexity to the typical fuzzing challenges [7]. In fact, stateful
fuzzers need to understand and explore the state model of the target system
(challenge C1), focus on the most interesting states (challenge C2), consider re-
lations between states and interesting messages (challenge C3), and deal with
expensive SUT restarts and synchronization (challenge C4).

Several stateful fuzzers have been proposed in recent years [10, 37, 9], how-
ever, none has fully addressed the aforementioned challenges. In fact, most ap-
proaches [27, 35, 4] require shutting down and restarting the SUT and require
snapshotting to provide a new trace (i.e., a new sequence of messages) [31].
Also, all the above-mentioned tools do not use the actual state model of the
SUT, implementing only a shallow notion of statefulness.

In this paper, we present LibAFLstar, a fast and state-aware protocol fuzzer
that solves the four above-mentioned challenges by combining:

1. knowledge about the state model — solving C1;

2. state schedulers to focus on the most interesting states — solving C2;

3. state-aware queues to group relevant messages by state — solving C3;

4. persistent mode to avoid resets of the SUT after every trace and expensive
snapshotting, allowing for fast synchronization between the fuzzer and the
SUT — solving C4.

We implement LibAFLstar on top of LibAFL and evaluate it on six targets
from ProFuzzBench [26], comparing the performance of our tool with the state-
of-the-art stateful fuzzers AFLNet [27] and ChatAFL [25].

In our experiments, we show that LibAFLstar is, on average, 20× faster
and achieves up to 3× the code coverage4 of AFLNet and ChatAFL.

4 In the paper, we use the term code coverage instead of edge coverage to avoid con-
fusion with the edge coverage in the state model.
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2 Background on Fuzzing

Stateless fuzzing. According to the technique used to generate messages,
fuzzers are divided into grammar-based and mutation-based. Grammar-based
fuzzers leverage the grammar of the inputs (given by the analyst or automati-
cally inferred) to generate inputs that slightly differ from the grammar [34], or
to generate grammar-compliant inputs that pass specific checks or constraints
in the code [24]. Mutation-based fuzzers do not require grammar; instead, they
take sample messages as input (often called seeds) to start the mutations. Smart
mutation-based fuzzers likeAFL++ (often called grey-box ) do not perform blind
mutations, as brute-force or simple mutation-based tools do, but instead use
heuristics (e.g., code coverage) to steer the generation of the messages towards
the most promising ones. Specifically, smart mutation-based fuzzers store code
coverage information in a matrix (a bitmap) and use a queue to store messages
that trigger new code coverage, allowing for further mutations later.

Stateless fuzzers require little else: input grammar or a few seeds are often
sufficient to find numerous bugs as proven by OSS-Fuzz [32], a Google initia-
tive that found 36.000 bugs in 1.000 projects5 thanks to three stateless fuzzers
(AFL++ [16], libFuzzer6 and Honggfuzz7).

Stateful fuzzing. Although the boundary between stateful and stateless sys-
tems can sometimes be vague [10], it is clear that for efficient fuzzing of certain
systems, the grammar of the messages or seed files alone is insufficient. In fact,
stateful systems — i.e. systems that require a state model to enforce specific
behaviours — require specific components or heuristics to manage their state-
fulness. For example, Daniele et al. [10] identified seven different categories of
stateful fuzzers that implement such ad-hoc components to deal with the stateful
nature of the SUT. Among others, they describe the evolutionary grammar-based
fuzzers. These fuzzers combine a feedback mechanism (similar to AFL++) with
the SUT’s state model specification. In fact, they use the feedback information
to steer the generation of the messages toward the most interesting ones and the
knowledge of the state model to explore different states. LibAFLstar falls in
this category.

On a higher level, the main problem with stateful fuzzing is the need to deal
with two different layers of inputs. In fact, while stateless systems only have
to fuzz the messages; stateful systems need to fuzz both the messages and their
order. Mutating the message order introduces additional complexity, as the same
messages can be sent from any state.

5 https://google.github.io/oss-fuzz/
6 https://llvm.org/docs/LibFuzzer.html
7 https://github.com/google/honggfuzz
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3 Challenges in Stateful Fuzzing

Stateful fuzzing is generally more challenging than stateless fuzzing, and us-
ing a stateless fuzzer to fuzz stateful systems is often not the best choice [10].
Specifically, four main challenges arise when fuzzing stateful systems:

C1 — State model exploration. Any well-designed stateful fuzzer must be
able to explore the state space. In other words, the fuzzer needs to move from
one state to another. This ability requires either i) the actual state model that
the SUT implements or ii) the ability of the fuzzer to infer the state model of the
SUT during the fuzzing campaign. Unfortunately, protocol specifications usually
contain scattered information about the state model through different pages of
prose, and stateful fuzzers struggle to infer a good approximation of the SUT
state model. For example, AFLNet [27] infers the state model of the SUT at run
time by observing only the response of the server. Despite this approach giving
a good understanding of the state model the SUT implements, it might result
in an inaccurate understanding. Different server responses might not trigger any
transition state, and two identical server responses can instead cause a state
transition.

C2 — States prioritization. Given the large number of states that certain
programs implement and the limited time availability, efficient stateful fuzzers
need to prioritize the most interesting states to fuzz. While a naive approach that
prioritizes states that trigger new coverage may work for some systems, it may
perform poorly for others, potentially overlooking interesting states. Advanced
stateful fuzzers should be able to schedule states according to their probability
of covering a big portion of code, i.e., finding more bugs. For example, dur-
ing the testing of an FTP implementation, it is not ideal to spend much time
fuzzing the first state, as many commands are only available after a successful
authentication.

C3 — Dependencies between messages and states. Stateless systems have
no notion of previous executions: they just take in input one message at a time.
For this reason, stateless fuzzers use a global queue to store messages that are
interesting for the system as a whole. On the contrary, when fuzzing stateful
systems, certain messages are interesting only in some states, i.e., after other
messages. Despite fuzzers like AFLNet or ChatAFL [25] partially solving this
problem by concatenating multiple messages in a single trace, this approach
requires the restart of the SUT after every trace. This causes serious performance
limitations, as explained in the next paragraph.

C4 — SUT restarts and synchronizations. SUT restarts represent a chal-
lenge for both stateless and stateful fuzzing. The time spent to restart the target
system significantly reduces the number of inputs that can be processed in a
given time budget. This makes fuzzers less efficient. Moreover, stateful systems
often implement more complex behaviours, making the restart overhead even
more expensive. Worse, when fuzzing stateful protocols that require communi-
cation between a client and a server, the synchronization between the two sides
also plays a crucial role. When fuzzing a server, stateful fuzzers cannot send
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Fig. 1: LibAFLstar workflow. The approach takes in input the state model of the
SUT and some seed traces. It then selects a state and keeps fuzzing it by sending
malformed messages. It switches state when no more coverage is triggered.

millions of messages sequentially; they must allow the server to process and
acknowledge each message.

In Section 4, we address these challenges and propose a set of new techniques
to design a fast and state-aware fuzzer for protocol implementations.

4 LibAFLstar: Methodology & Design

In this section, we introduce LibAFLstar, a state-aware fuzzer that addresses
the four challenges presented in Section 3.
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Our fuzzer takes in input seed traces for the generation of the inputs and the
state model of the SUT to create the prefixes, i.e., a set of partial sequences of
messages.8

LibAFLstar first sends a prefix to reach a target state, then appends a
mutated message — derived from the sample traces — deemed interesting for
that state. For our experiments, we obtain the sample traces by sniffing network
traffic (like AFLNet and ChatAFL do) and the prefixes using a black-box
state learning technique [28], since the official FTP specification does not provide
an exhaustive state model description. More in detail, we leverage the learning
techniques to infer the state model of the SUT and then determine prefixes for
reaching each state.

The overview of the framework (presented in Figure 1) consists of the follow-
ing steps:

I. State and Message Selection. The state scheduler chooses a state to fuzz
(prefix selection in Figure 1), and a message scheduler selects the message
to mutate from the local queue of the selected state (local message selec-
tion in Figure 1). In fact, unlike other approaches that keep only one global
queue of interesting messages [31, 20], LibAFLstar stores a queue of rele-
vant messages for each state. This allows the fuzzer to select messages that
are interesting for specific states, as detailed in Section 4.2.

II. Local Queue and Bitmap Updates. While fuzzing the chosen state, the
code coverage is collected in the local bitmap, and inputs deemed interesting
are inserted in the local message queue, as explained in Section 4.3.

III. Coverage Analysis. LibAFLstar observes the coverage and decides whether
to (a) continue fuzzing the same state (green line in Figure 1) or (b) select
a new state (red line in Figure 1), as detailed in Section 4.4.

In the next sections, we expand on each of these phases with a running
example that simulates the steps that LibAFLstar performs to fuzz LightFTP,
an FTP server commonly used to benchmark stateful fuzzers. In Section 5, we
describe the implementation details of our prototype.

4.1 Preprocessing

Our approach, as any other mutation-based fuzzer (including AFLNet and
ChatAFL), needs seed traces to bootstrap the fuzzing campaign. We collect
these traces beforehand by sniffing the communication between the server and
a client during legitimate protocol usage. As shown in prior work, the quality
of the sniffed traffic strongly influences the generation of the seed traces and,
therefore, the fuzzing performance [29]. We limit the risk of collecting incom-
plete or inaccurate network traffic by monitoring the network traffic between a
client (executed by three different analysts) and the server for one hour in total.

8 Every prefix unambiguously identifies a certain state since stateful systems are usu-
ally deterministic.
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LibAFLstar also needs the prefixes to be able to explore the state model. For
instance, when fuzzing LightFTP (state model in Figure 2), the prefixes required
to reach all the states are:

P1: USER ubuntu (to reach the state S1 – allowing the user to insert the pass-
word)

P2: USER ubuntu, PASS ubuntu (to reach the state S2 – allowing the user to
login)

P3: USER ubuntu, PASS ubuntu, list (to reach the state S3 – allowing the user
to show the repositories in the server)

P4: USER ubuntu, PASS ubuntu, epsv (to reach the state S4 – allowing the user
to enter in passive mode)

Retrieving the prefixes to reach each state is challenging, as the FTP specifi-
cation lacks a defined state model. In addition, the actual implementation might
adopt a slightly different version of the state model presented in the specification.

For our experiments, we infer the state model of live555 and Lighttpd from
the specification and the state models of the different FTP implementations using
the active learner tool LearnLib [33]. Other active learner tools are available and
actively maintained9 Interestingly, the four FTP implementations implement
slightly different state models.

Active learning tools [33] use an initial alphabet to actively query the SUT
with all the possible combinations of the commands in the initial alphabet. They
observe (in a black-box fashion) requests and responses and infer the state model
by improving their knowledge of the state model via counterexamples. Every
time the tool finds an example that does not fit its assumption, it improves its
knowledge of the state model. The approach is methodical and precise, although
sometimes slow.

Since active learning tools struggle with non-deterministic behaviours, we
developed an ad-hoc harness to address them. For example, by handling all the
requests that triggered a timeout.

Additionally, LearnLib requires abstraction functions (one for requests and
one for responses) to map raw messages into learner-compatible inputs. For
example, the raw messages “USER wrong user1” and “USER wrong user2” are
mapped to the same input “USER wrong user” to limit the state explosion.

Writing the harness and the abstraction functions required around two hours
of work.

Figure 2 shows the state model produced by LearnLib, which we use to
extract the prefixes to reach every state.

It is worth it to mention that active learning provides the best possible list
of prefixes. In fact, it provides all the prefixes to reach all the states. Simpler
(and faster) approaches may involve extracting prefixes directly from network
traffic or manually inferring the state model from the protocol specification.
For example, the seed file used by AFLNet10 {USER ubuntu, PASS ubuntu,

9 https://des-lab.github.io/AALpy/
10 https://github.com/aflnet/aflnet/blob/master/tutorials/lightftp/in-ftp/

ftp_requests_full_normal.raw
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s0 others /...

s1

USER ok / 331 USER no / 331quit / 221

others / ...

s2

PASS ok / 230

USER no / 331 quit / 221

USER ok / 331

others / ...

s3

PWD / 257 LIST / 451MLSD / 451 s4

epsv / 229 pasv / 227

USER no / 331 quit / 221

USER ok / 331

others / ...

epsv / 229pasv / 227

USER no / 331quit / 221

USER ok / 331

LIST / 226 ABOR / 226 MLSD / 226

others / ...

Fig. 2: LightFTP state model, inferred via LearnLib.

SYST, PWD, PORT 127,0,0,1,132,209, LIST, MKD test, QUIT} — obtained
by sniffing the network traffic — would already cover 80% of the states. In fact,
it would cover all the states but the state S4 in Figure 2, reachable only by
sending the message PASV or EPSV from the states S2 or S3.

Using a state model in input allows LibAFLstar to extract the prefixes used
to effectively explore the state model of the SUT, addressing the challenge C1.

4.2 State and Message Selection

State Selection LibAFLstar selects promising states – in the sense of having
a high probability of covering large portions of code – using the Outgoing Edges
(OE) state scheduler. The scheduler prioritizes states with a higher number
of outgoing edges. The logic behind this heuristic is that these states likely
implement complex functionality, making them ideal fuzzing candidates. For the
sake of comparison, we also implement a naive state scheduler, Round Robin
(RR), which simply selects the target states in turn. The ability to focus on the
most promising states addresses the challenge C2.

Message Selection LibAFLstar inherits LibAFL’s message selection strat-
egy. More in detail, LibAFLstar saves the messages that trigger new code
coverage in the state’s local queue and mutates them until no more coverage is
discovered. It is worth mentioning that the queue is never empty, as the mes-
sages that do not discover new coverage are not removed from the queue but
just moved to the end.

4.3 Local/Global Queues and Bitmaps

As already mentioned in Section 3, a message can be interesting for one state but
not interesting for others. Thus, when fuzzing stateful systems, using a global
queue for every state is not the best choice, as it fails to capture input-state
dependencies.
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S0

S1

S2

S4S3

 1. USER ubuntu

USER u?untu

USER ubuntu

PASS pass

PASS ubUntu

PASS ubuntu

US?er ubuntu

EPSV

PDW

USER ubuntu

U?SR ??

P?W

EPS??

PA?? ubu1

EPsV?

UseR PASS

 2. PASS ubuntu

 3’. ESPV 3. PWD

Q0

Q1

Q2

Q3 Q4

Fig. 3: LibAFLstar implements different queues for different states to be able to
mutate only the messages deemed interesting for that specific state.

For instance, while fuzzing LightFTP, sending commands that require prior
authentication before the user is authenticated triggers an uninteresting er-
ror message. Similarly, when fuzzing stateful systems, the feedback information
(recorded in bitmaps) should be associated with individual states rather than
the system as a whole. For these reasons, LibAFLstar can also work with local
message queues and bitmaps for each state.

Figure 3 shows LibAFLstar knowledge (state model and queues) while
fuzzing LightFTP. In this example, the messages PWD and EPSV are inter-
esting only when sent from state S2 and not from state S0. On the other hand,
the message USER ubuntu is interesting in the states S0 and S2. In fact, despite
messages that are interesting in one state might not be in another, a few inputs
might be interesting for multiple states. Having the same message in multiple
queues is not possible while sharing bitmap information, as, after the first time,
interesting messages are not recognized as new. We solved this issue by allow-
ing LibAFLstar to have a bitmap for each state. This approach enables more
fine-grained coverage tracking, allowing for precise queue management.

The ability of the fuzzer to keep state-related queues and bitmaps addresses
challenge C3.

4.4 Coverage Analysis

After sending a message, LibAFLstar can either (1) continue fuzzing without
restarting the SUT (green arrow in Figure 1) or (2) select a new state to fuzz
(red arrow in Figure 1).

We efficiently implement these two mechanisms by using the AFL++ per-
sistent mode, which allows LibAFLstar to send many messages to the SUT
without restarting it. It is worth highlighting that the persistent mode was de-
veloped to fuzz stateless systems exclusively — since there is no point in restart-
ing the SUT if the behaviour does not change after restarts. On the contrary,
LibAFLstar uses the persistent mode to fuzz stateful systems efficiently.
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1. int state =0;

2. // while (client\_connected ()){

3. while (AFL_LOOP <UINT_MAX }{

4. command=receive command();

5. response=execute command(command);

6. send response(response);

7. }

Fig. 4: Modification on the SUT code to enable the persistent mode. The example
presents the pseudo-code and not the actual LightFTP code. The original code
is commented out, the code needed to run LibAFLstar is in blue.

●

●
●
●

●
●
●

●

●

●

●
●

Fig. 5: LibAFLstar architecture.

The persistent mode consists of a special loop that allows the fuzzer to cycle
a specific portion of the code without any restart. LibAFLstar leverages this
mechanism to cycle the portion of code that handles the commands to send
multiple messages to the same instance of the SUT. To enable the persistent
mode, it is necessary to modify the code of the SUT to add this loop. For example,
patching the LightFTP server requires the modification shown in Figure 4.

Moreover, the persistent mode solves the synchronization overhead. Using
the persistent mode allows our fuzzer to know when the SUT has finished its
computation — thanks to a pipe message sent by the SUT to the fuzzer. This
allows the fuzzer to send hundreds of messages per second, without worrying
about overloading the SUT. As we discuss more extensively in Section 8, sending
multiple messages without restarting the SUT might cause unexpected state
transitions. In fact, some messages sent from a certain state might trigger a
transition from the current state to a new one.

The persistent mode addresses challenge C4.

5 Implementation Details

LibAFLstar is written in Rust and built on top of LibAFL. As shown in
Figure 5, it consists of three components:

1. the Fuzzer : it is the core of LibAFLstar as it incorporates LibAFLstar
logic. It contains the standard LibAFL scheduler algorithms for the messages
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and the new scheduler algorithms for the states (Round Robin and Outgo-
ing Edges), introduced in Section 4.2. Additionally, it supports standard
AFL++ mutation functions, such as havoc mutations. Moreover, it imple-
ments the standard feedback handler, i.e., a function that determines when
an input is interesting and the standard objective handler, i.e., a function
that determines if an input achieved the pre-determined goal — in our case,
the crash of the system. All the non-volatile data used during the fuzzing
campaign are stored in the Fuzzer. It stores data about crashes found, input
that triggered the crashes, and the sample traces. Moreover, it stores all the
data that are state-related, i.e., prefixes, local queues and local bitmaps;

2. the Executor : it manages everything regarding the SUT execution. More
in detail, it handles the SUT initialization and restart, and contains the
Observer, which monitors the SUT execution by tracking the code coverage
and system behaviour.

3. the Network Module: it allows LibAFLstar to communicate over network
sockets. This module allows LibAFLstar to operate in both client and
server modes, enabling it to fuzz either side as needed.

The main modification we made in LibAFL was to add a loop to the ac-
tual LibAFL one. This loop enables LibAFLstar to select a state via the state
schedulers, reset the SUT to its initial state, and send the prefix to reach the tar-
get state. Once the prefix (and thus the state) is selected, LibAFLstar fetches
a message from the local queue of the selected state, mutates and forwards it to
the SUT, and observes the coverage.

6 Experimental Results

We evaluated our approach on six real-world protocol implementations, namely
LightFTP, BFTPD, ProFTPD, Pure-FTPd, Lighttpd, and live555. Our experi-
ments are divided into two parts: an ablation study to assess the impact of dif-
ferent configuration settings (Section 6.1) and a comparative evaluation against
other state-of-the-art stateful fuzzers (Section 6.2). We ran our experiments on
a VPS equipped with an Intel Xeon (Ice Lake) processor (16 cores at 2.6 GHz)
and 64 GB of DDR4 RAM.

6.1 Ablation Study

To investigate how different configurations affect performance and effectiveness,
we conducted 24 experiments for each case study, with each run lasting one hour.
To remove any randomness involved, we re-ran all the experiments three times
and observed the average. LibAFLstar can be configured with:

1. A state scheduling algorithm: round-robin (RR) or outgoing-edge-based (OE);
2. Either global or local queues and bitmaps;
3. A persistent loop of configurable length, where a length of 1 disables persis-

tent mode.
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Table 1: LibAFLstar ablation study for one hour. SS = State Scheduler; LL =
loop length (* with 1 meaning no persistent mode enabled) B = Bitmap; Q =
Queue; EC = Edge Coverage (in %); E = Number of executions (in thousands);
G = Global; L = Local.

SS LL B Q
BFTPD LightFTP lighttpd live555 ProFTPD PureFTPD

EC E EC E EC E EC E EC E EC E

R
o
u
n
d

ro
b
in

1* G G 13.64 47 28.79 132 3.86 239 4.61 201 9.46 39 7.44 4.92
10 G G 16.62 66 32.81 459 4.62 1k 4.72 316 10.66 75 8.29 2.58
100 G G 17.19 365 34.38 2k 5.37 4k 4.85 329 11.65 465 7.47 2.28
1000 G G – – 34.38 4k 5.12 9k 4.61 303 12.01 3k 7.47 2.28
1* G L 13.92 46 28.35 155 3.85 234 4.53 237 – – 7.44 4.92
10 G L 16.62 84 32.59 557 4.64 1k 4.87 361 – – 7.47 2.58
100 G L 17.19 316 34.38 3k 4.67 4k 4.79 572 – – 7.54 2.28
1000 G L 18.47 2k 34.38 5k 4.87 10k 4.70 390 – – 7.47 2.24
1* L L 14.06 47 28.91 155 4.26 234 4.41 221 9.73 40 7.44 4.92
10 L L 16.12 71 33.04 554 4.69 1k 4.71 437 10.93 77 7.57 2.57
100 L L 16.69 429 34.38 2k 5.39 4k 4.85 538 11.44 455 7.57 2.30
1000 L L 21.16 3k 34.38 5k 5.18 9k 4.71 498 12.12 3k 7.64 2.24

O
u
tg

o
in
g
e
d
g
e
s

1* G G 13.64 46 28.91 143 4.00 240 4.41 207 10.39 40 7.54 5.20
10 G G 16.69 71 33.26 466 4.51 1k 4.70 290 10.64 77 7.47 2.59
100 G G 16.83 379 34.49 2k 5.49 4k 4.81 417 11.62 427 7.57 2.30
1000 G G 18.96 2k 34.49 5k 5.09 8k 4.87 435 12.07 3k 7.47 2.26
1* G L 14.20 46 30.13 169 4.06 235 4.41 237 9.22 1 7.44 5.11
10 G L 16.48 71 32.70 565 4.48 1k 4.85 413 9.26 1 7.57 2.59
100 G L 16.76 286 34.49 3k 4.71 4k 4.82 591 – – 7.47 2.30
1000 G L 17.97 2k 34.38 5k 5.01 9k 4.84 384 – – 7.87 2.22
1* L L 14.06 46 29.69 169 4.24 236 4.48 229 10.27 41 7.44 5.21
10 L L 16.69 71 33.04 560 4.71 1k 4.77 435 10.90 77 7.57 2.56
100 L L 16.83 379 34.38 3k 5.45 4k 4.83 489 11.45 444 7.87 2.32
1000 L L 18.96 2k 34.38 4k 5.60 9k 4.87 464 12.17 3k 7.57 2.26

The corresponding results are shown in Table 1.

State Schedulers Evaluation. As mentioned in Section 4.2, LibAFLstar im-
plements two state scheduler algorithms: RR and OE. Although the experiments
do not show much difference between the two approaches, this may be due to the
low complexity of the state model implemented by the protocols. Nevertheless,
a closer look at the code coverage suggests OE to perform slightly better.

Global and Local Queues Evaluation As mentioned in Section 3, local
queues give more information about the quality of the messages for a certain
state. The experiments show that local queues and local bitmaps, on average,
give the best results in terms of coverage.

Persistent Loop Length Evaluation As mentioned in Section 4.4, the length
of the persistent loop tells the fuzzer how many messages to send before restart-
ing the SUT. As shown in Figure 6, longer persistent loops result in a higher
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Fig. 6: Relation between the length of the AFL loop and the number of messages
sent.
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Fig. 7: CPU usage of LibAFL* testing LightFTP.

number of messages sent. The results show that the length of the persistent
loop is proportional to the number of executions, as bigger loops imply less time
wasted in restarting the SUT. In fact, as explained in [2], resets are one of the
biggest overheads when fuzzing stateful systems. Further experiments were con-
ducted to determine whether bigger loops would have improved the quality of
the fuzzing campaign. However, we did not notice any improvement for a length
bigger than 1000.

Network Overhead Evaluation Network protocols can add significant over-
head due to network system calls [2]. We analyzed the network overhead by
monitoring the user and system CPU usage during the fuzzing campaign and
noted that the system calls overhead is about 50%, as shown in Figure 7. We de-
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Table 2: Results of 24 hours of fuzzing. We highlighted in bold the best results.
Na means we used the specification to infer the state model of the SUT.
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LightFTP 32.4 305 3.5 34.7 250 2.8 38.1 67 775 1h 30 30
BFTPD 17.5 233 2.7 20.4 239 2.7 25.4 56 648 1h 30 30
ProFTPD 15.3 162 3.4 17.4 164 1.8 17.2 44 509 1h 30 45
PureFTPd4.8 297 3.4 4.7 138 1.6 14.1 85 983 1h 30 30
Lighttpd 5.4 209 2.4 5.3 241 2.8 5.9 22 254 30m Na Na
live555 5.1 839 10.14 5.2 667 8.6 5.8 7 103 2h Na Na

cided to fuzz the SUTs without replacing the network calls to be fair to AFLNet
and ChatAFL.

6.2 Comparison with AFLNet and ChatAFL

For the benchmark, we compare LibAFLstar (using local bitmaps and queues,
the persistent loop length of 1000 and the outgoing edge state scheduler algo-
rithm) with two state-of-the-art stateful fuzzers, againstAFLNet andChatAFL.
Due to fuzzing nondeterminism, this comparison was averaged across three runs
of 24 hours. We selected AFLNet [27] since it is one of the most popular
mutation-based open-source protocol fuzzers and ChatAFL [25] as it is one
of the most recent stateful fuzzers published in a top conference. In the future,
we plan to extend our benchmarking to SGPFuzzer [35] and Stateful Greybox
Fuzzing [4].

Number of messages per second. Table 2 shows how LibAFLstar sends
many more messages than AFLNet and ChatAFL. This is due to the fact that
LibAFLstar drastically reduces the number of resets thanks to the persistent
loop. Also, we attribute the huge improvement in terms of the number of mes-
sages to the very low impact on the performance of the synchronization between
the fuzzer and the client (as explained in Section 4.4). While LibAFLstar
uses the persistent mode mechanism to synchronize the SUT and the fuzzer,
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the other fuzzers wait for the responses to be received. It is worth highlighting
that AFLNet and ChatAFL record the number of traces, not the single mes-
sages sent. A fair comparison with LibAFL* requires multiplying the number of
traces and number of traces per second by the length of the trace — typically
five or six messages. However, this adjustment does not take away the fact that
LibAFLstar is an order of magnitude faster than its competitors.

Total Coverage. LibAFLstar achieves higher coverage on all the case stud-
ies, except ProFTPD (−1%). In all the other case studies, LibAFLstar shows a
significant improvement in terms of code coverage. More in detail, LibAFLstar
achieves, on average, 48.6% more coverage than AFLNet and 42.7% more cov-
erage than ChatAFL.

7 Related Work

State awareness. A few papers have already explored the correlation between
fuzzing and state learning. For example, De Ruiter et al. [11] used LearnLib to
find logical bugs in TLS implementations; Bastani et al, [5] devised their active
learner to synthesize a grammar to give to the fuzzer; Van-Thuan et al. [27],
Yingchao Yu et al.[35] and Doupé et al.[12] developed algorithms to infer the
state model of the SUT run-time by observing the responses of the (web) servers.
Nevertheless, despite all the approaches dealing with the statefulness of the
systems and partially solving Challenge C1 (Section 3), they do not implement
schedulers to prioritize the most interesting states. Moreover, all stateful fuzzers
(except those using snapshotting) rely on expensive resets to send fresh traces
(challenge C2) and use timeouts to synchronize the server and client (challenge
C3), which leads to poor performance.

State schedulers. Fuzzers like AFLNet prioritize states based on the number
of newly discovered edges; however, to the best of our knowledge, no state-
ful fuzzer employs an Outgoing Edges (OE) heuristic to prioritize interesting
states. Nevertheless, the approach is related to PageRank [6], the search algo-
rithm Google uses to measure the importance of web pages. PageRank scores the
web pages according to the number of external websites that point to that page
(ingoing edges). The heuristic is that good websites are likely to be linked more
often from external websites. A similar heuristic applies to our OE algorithm:
“states with many outgoing edges likely implement many features and therefore
contain a lot of lines of code. This makes these states honeypots for fuzzers.”

Persistent mode for stateful fuzzing. LibAFLstar is the first fuzzer that
leverages the persistent mode to mitigate the overhead of shutting down and
restarting the SUT.

Snapshotting is another technique that tries to solve the same challenge dif-
ferently. Some stateful fuzzers [31, 18, 20] copy the memory of the SUT in a
certain state to be able to go back to the same state later. This allows the fuzzer
to reach one specific state more quickly in the future — via the snapshot pre-
viously created — and fuzz it. In the same way, the persistent mode allows the
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fuzzer to reach one specific state — just by sending the correct prefix — and
fuzz it. Unfortunately, snapshotting often introduces considerable overhead that
often makes sending the whole trace again less expensive.

8 Limitations and Future Work

LibAFLstar requires the source code to be patched to enable the persistent
mode. We noticed that the majority of the stateful protocols contain a single
send-receive loop that processes the commands. In this scenario, the main loop
is easy to spot and patch to enable the persistent mode. Moreover, the patch
usually involves a few lines of code: 7 changes in the best scenario (ProFTPD)
and 35 changes in the worst one (live555). However, in other cases, identifying
such a loop can be more challenging and might require a deeper knowledge of
the protocol logic. For example, OpenVPN [14], a widely used VPN implemen-
tation, is event-driven. This makes identifying the command loop much more
challenging. Also, when triggering a new code coverage in a certain state (that
we reached thanks to a specific prefix), we do not know whether the new cov-
erage is triggered in that particular state. In fact, unexpected state transitions
might have occurred before, as mentioned in Section 4.4. The persistent mode
can also limit the reproducibility of detected bugs. To solve this problem, we
save all the messages sent during the persistent mode loop that triggered a bug.

Future research could explore alternative scheduling algorithms to prioritize
interesting states. For example, the technique devised by Liyanage et al. [22] can
be used to predict how likely a certain state would lead to new edge discovery.
Eventually, we plan to extend our validation to other case studies to assess the
effectiveness of our approach. One solution can be to implement LibAFLstar
within ProFuzzBench [26], a widely used benchmark for stateful fuzzers, to have
a more systematic and wide understanding of the effectiveness of our fuzzer. As
already mentioned in Section 6.1, network calls might slow down the fuzzer’s
performance. Libraries like PREENY 11, Green-Fuzz [1], or Sabre [3] might help
here to reduce the network overhead and additionally enhance the fuzzer perfor-
mance.

9 Conclusion

In this paper, we presented LibAFLstar, a fast and state-aware protocol fuzzer
designed to address the challenges of fuzzing stateful systems. LibAFLstar uses
the notion of prefixes to navigate the state model, implements the outgoing edge
state scheduler to prioritize states that most likely cover big portions of code,
implements different queues and bitmaps for different states, and uses the persis-
tent mode (i.e., the ability to keep the SUT running between traces) to reduce the
number of restarts of the SUT. The ablation study confirms that all the above-
mentioned strategies enhance the fuzzer performance. In fact, LibAFLstar has

11 https://github.com/zardus/preeny
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the best results by using the outgoing edge scheduler algorithm, local queues,
local bitmaps and the persistent mode. Also, the ablation study shows that the
biggest improvement is given by the use of the persistent mode and that longer
persistent loops positively affect the fuzzer speed.

We evaluated LibAFLstar on six protocol implementations (LightFTP,
BFTPD, ProFTPD, Pure-FTPd, Lighttpd and live555) and compared the re-
sults with AFLNet and ChatAFL. The results show that LibAFLstar is over
30× faster than its competitors while achieving, on average, 1.4× more coverage.

Data Availability

In the spirit of open science, we release the code for this project: https://
github.com/LibAFLstar/LibAFLstar.
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