
There’s a Hole in that Bucket!
A Large-scale Analysis of Misconfigured S3 Buckets

Andrea Continella∗
UC Santa Barbara

conand@cs.ucsb.edu

Mario Polino
Politecnico di Milano
mario.polino@polimi.it

Marcello Pogliani
Politecnico di Milano

marcello.pogliani@polimi.it

Stefano Zanero
Politecnico di Milano

stefano.zanero@polimi.it

ABSTRACT
Cloud storage services are an efficient solution for a variety of use
cases, allowing even non-skilled users to benefit from fast, reliable
and easy-to-use storage. However, using public cloud services for
storage comes with security and privacy concerns. In fact, manag-
ing access control at scale is often particularly hard, as the size and
complexity rapidly increases, especially when the role of access
policies is underestimated, resulting in dangerous misconfigura-
tions.

In this paper, we investigate the usage of Amazon S3, one of the
most popular cloud storage services, focusing on automatically an-
alyzing and discovering misconfigurations that affect security and
privacy. We developed a tool that automatically performs security
checks of S3 buckets, without storing nor exposing any sensitive
data. This tool is intended for developers, end-users, enterprises,
and any other organization that makes extensive use of S3 buckets.
We validate our tool by performing the first comprehensive, large-
scale analysis of 240,461 buckets, obtaining insights on the most
common mistakes in access control policies. The most concerning
one is certainly the (unwanted) exposure of storage buckets: These
can easily leak sensitive data, such as private keys, credentials and
database dumps, or allow attackers to tamper with their resources.

To raise awareness on the risks and help users to secure their
storage services, we show how attackers could exploit unsecured S3
buckets to deface or deliver malicious content through websites that
relies on S3 buckets. In fact, we identify 191 vulnerable websites.
Finally, we propose a browser extension that prevents loading re-
sources hosted in unsecured buckets, intended either for end-users,
as a mitigation against vulnerable websites, and for developers and
software testers, as a way to check for misconfigurations.

CCS CONCEPTS
• Security and privacy → Systems security; • Networks →
Cloud computing;

∗Also with Politecnico di Milano.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274736

KEYWORDS
Computer systems; security; Cloud computing; misconfigurations;
vulnerabilities

ACM Reference Format:
Andrea Continella, Mario Polino, Marcello Pogliani, and Stefano Zanero.
2018. There’s a Hole in that Bucket! A Large-scale Analysis of Misconfig-
ured S3 Buckets. In 2018 Annual Computer Security Applications Conference
(ACSAC ’18), December 3–7, 2018, San Juan, PR, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3274694.3274736

1 INTRODUCTION
Due to their scalability, cost-effectiveness, and ease of use, cloud
storage services are widely used and attractive for hobbyists and
companies of all sizes alike. Remarkably, the spread of cloud storage
services, accessible through simple-to-use APIs, is contributing to
reduce the friction between developers and the need of skilled sys-
tem administrators able to configure and secure complex in-house
storage servers. Despite this advantage, the pervasiveness of cloud
storage services—often replacing solutions once hosted on premise,
as well as “behind the firewall” storage servers for internal data—
comes with privacy concerns due to the possibility of involuntary
data exposure. While most services offer fine-grained access con-
trol systems, these are not trivial to understand and use. Indeed,
according to a recent study [10], one of the most frequent type of
misconfiguration is the wrong assignment of permissions due to
the lack of knowledge or experience. Unlike a permission error in a
behind-the-firewall storage system, the same error in a public cloud
storage service potentially exposes confidential information to the
entire Internet, much like exposing an FTP server with anonymous
access enabled to the Internet [26].

Storage services are a key part of the offerings of leading cloud
services operators, e.g., Amazon S3 [2], Google Cloud Storage [13],
Microsoft Azure Storage [18], and Digital Ocean Spaces [11].
Among these, arguably, one of themost widespread andwell-known
service is Amazon S3 (Simple Storage Service). In S3, users define
storage containers (buckets) that contain arbitrary data objects
(i.e., files). Access control rules can be defined at the bucket and
object level. However, newly created buckets and objects are private
and can be accessed only by their owner. Despite this default policy,
many high-profile cases of security issues stem from permission
misconfigurations: In October 2017, several S3 buckets belonging
to a large technology consulting firm were left publicly accessible,
which contained sensitive data, including access keys and creden-
tials [22]; a similar data leak revealed a publicly-accessible database
with information about customers of a large cable company [9].
Worse, misconfigurations may give attackers another opportunity
to infect the users of popular websites with malicious code: In Feb-
ruary 2018, a site belonging to the Los Angeles Times was found to

https://doi.org/10.1145/3274694.3274736
https://doi.org/10.1145/3274694.3274736


ACSAC ’18, December 3–7, 2018, San Juan, PR, USA A. Continella et al.

be serving malicious crypto-mining JavaScript. The infection was
caused by a misconfiguration of the Amazon S3 bucket that hosted
the static assets, which enabled unauthenticated users to upload
and overwrite arbitrary files [19]. More recently, information secu-
rity experts have found publicly writable buckets and left alerts (i.e.,
uploaded text files) to notify the owners of the misconfiguration:
According to the BBC [30], this happened in more than 50 cases.

The recent informal scans of the cloud storage ecosystem [24, 28],
motivated us to create a tool for a comprehensive, large-scale, anal-
ysis of the usage of cloud storage in the wild, to help the users
understand the source of configuration mistakes. Taking as a case
study Amazon’s S3, we present our approach and tool to quantify
the prevalence of misconfigurations in the wild. Our tool can per-
form security checks and discover publicly exposed buckets, verify
their access permissions and determine possible misconfigurations.
Moreover, through web crawling and by leveraging data from the
PublicWWW project [23], we study and quantify the problem of
web resources loaded from publicly writable S3 buckets.

We found that, out of the representative subset of buckets we
analyzed as of June 2018, and notwithstanding the public awareness
raised by recent high-profile events, 11.01% of the S3 buckets are
public (i.e., their files can be listed), 8.46% are readable, and 2.29%
are writable. Among these, we found dangerous cases of readable
buckets that could be leaking sensitive data, such as private keys
and database dumps. Finally, we found 5,196 websites that load
resources directly from S3 buckets into their homepage. Out of this
set, 175 websites are vulnerable to defacement and 39 websites are
vulnerable to malicious injection, putting end-users at risk.
Contributions. To the best of our knowledge, we are the first to
comprehensively investigate the security issues caused by miscon-
figurations in the access control rules of a cloud storage service,
and the chain of their consequences.

In summary, we make the following contributions:
• We build an automated tool to perform security checks on
Amazon S3 buckets, discovering publicly accessible buckets,
and verifying their access policies.
• We show how our tool can investigate the usage of the Ama-
zon S3 service, analyzing more than 240,000 S3 buckets and
discovering misconfigurations that impact security and pri-
vacy, including writable buckets containing resources loaded
by several popular websites.
• We propose and develop a mitigation to protect end-users
from those vulnerable websites that rely on writable buckets.
Specifically, as part of this research, we release1 a prototype
of browser extension that checks if a website is requesting
resources hosted in untrusted, writable buckets, and prevents
the browser from loading such resources.

Ethical Considerations. Our large-scale scan raises important
ethical considerations. In Section 6, we describe the countermea-
sures that we took to prevent potential harm. In particular, we do
not publish our list of buckets as this could be abused by malicious
attackers. Instead, as further discussed in Section 6, we notified re-
sponsible entities, including Amazon AWS, to give them the chance
to timely fix the identified misconfigurations.

1 https://github.com/necst/truster

http[s]://<BUCKET_NAME>.s3[-region].amazonaws.com/
http[s]://s3[-region].amazonaws.com/<BUCKET_NAME>/

Figure 1: URLs format Amazon S3 buckets.

2 BACKGROUND
2.1 Amazon S3
Amazon S3 (Simple Storage Service) is a cloud-based service that
stores arbitrary data objects organized into “buckets.” Users can
create buckets belonging to any of the available AWS regions, and
assign a globally unique name (regardless of the region). Users
can store and retrieve objects from their buckets either using the
web-based console, or programmatically, using a REST interface
or the AWS SDK. This gives application developers access to a
highly reliable, scalable and fast data storage infrastructure through
libraries available for a variety of programming languages.

Each resource—be it a bucket, or an object—is identified by a
resource URI. Amazon S3 supports virtual-host-style and path-
style URLs (Figure 1). Additionally, in order to reference S3 re-
sources from custom domains, if a bucket name has the for-
mat of a valid domain name (e.g., storage.example.com), users
can set up a CNAME resource record in the domain’s name-
servers to point to the virtual-host-style bucket URL (e.g., stor-
age.example.com.s3.amazonaws.com).

Amazon S3 supports various access control policies that can be
attached either to resources (buckets and objects) or to users. It is
possible to grant particular permissions to specific users and AWS
accounts, to non-authenticated users (group AllUsers), or to any
authenticated AWS account (group AuthenticatedUsers). There
are two ways to specify resource permissions: First, each bucket and
object is associated with an access control list (ACL), written in a
S3-specific XML schema or built through a graphical user interface
in the Amazon AWS web console; and, second, buckets can be
associated with a bucket policy, specified as a JSON file according
to the Amazon IAM policy language, used across AWS. Resource-
based policies and ACLs are stored as bucket sub-resources. With
respect to ACLs, policies allow to express more complex rules:
While an ACL should be explicitly applied to each resource, a single
policy may include wildcards and variables to match the desired
resources (e.g., to match objects in a specific sub-folder), as well as
more specific conditions. User policies, instead, can be attached to
a specific Amazon IAM user, group or role, and are used to grant
or restrict access to resources where the parent AWS account owns
or is granted access. Resources are private by default: The owner
AWS account has full permissions, and no other account has any
access right.

2.2 Threats
In this paper, we investigate misconfigurations in the access control
rules of Amazon S3 buckets found in the wild. Such misconfigura-
tions may inadvertently allow unrestricted listing (e.g., by apply-
ing the S3:ListBucket policy action to anonymous, unauthorized
users, or by granting the READ permission to all users in the bucket
ACL), reading (S3:ListBucket policy action, or READ ACL permis-
sion in some or all objects of a bucket), or writing (S3:PutObject

https://github.com/necst/truster


There’s a Hole in that Bucket! ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

policy action, or WRITE bucket ACL permission), paving the way
to security or privacy issues. Specifically, such misconfigurations
enable the following scenarios:

• Data Leakage (readable buckets). A bucket whose content is
unintentionally made public may lead to privacy issues due
to the leakage of confidential or sensitive data.
• Web Resource Infection (writable buckets). Objects hosted
in a publicly writable bucket can be overwritten with mali-
cious content. This may pose different threats according to
how the object is referenced [20]. Threats range from deface-
ment [17] (e.g., a writable resource loaded by a website), to
infection of end-user computers (e.g., a writable executable
file referenced from a trusted website), to web site compro-
mise (e.g., a writable JavaScript asset loaded by a web site).
In the latter case, the malicious JavaScript may consume the
resources of the end-user’s computer (e.g., cryptocurrency
mining script [14]), or target confidential information, given
that it runs with the same origin of the compromised website.
• Ransom Demand (writable buckets). Attackers may, simi-
larly to well-known ransomware [7], encrypt objects and
ask owners for a ransom, following the attack scheme al-
ready employed for unsecured MongoDB instances [27].
• Domain Name Trust Exploitation (writable buckets). If a
writable bucket is aliased to a custom subdomain of an orga-
nization that is usually considered trusted (e.g., a well-known
company), the ability to serve arbitrary files from a “trusted”
subdomain may be used to carry on a targeted phishing
attack that exploits the implicit trust in the domain name
(e.g., http://storage.<trusted-corp>.com), or bypass se-
curity whitelists based on the domain name. For example,
this can happen with overly broad web content security
policy (CSP) rules of the form *.<trusted-corp>.com, re-
sulting in the bypass of the policy, or in case of domain-name
based whitelists implemented at the firewall or application
proxy level.
• Dangling Subdomain Takeover (unclaimed buckets). If a DNS
CNAME record that points to an Amazon S3 bucket is not re-
moved or updated when the pointed bucket is deleted, then
it becomes dangling: It points to an abandoned service that
can be trivially taken over by an attacker [16]. In fact, as
Amazon S3 does not require domain ownership verification
before allowing access to a bucket through a custom CNAME
alias, an attacker can simply create a bucket under their AWS
account with the (dangling) subdomain as a name, and take
over the subdomain. This scenario is orthogonal to the pre-
vious ones, as it does not stem from a misconfiguration of
the bucket permissions, but from a missing check in the dele-
tion process when a custom domain is used. Furthermore,
it is not a cloud storage-specific issues, but rather an issue
stemming from the fact that the service supports custom
subdomains, and that, to date, lacks domain ownership vali-
dation. However, this is a relevant threat model, as according
to how the original bucket is used, this paves the way to
resource infection, or to exploiting the users’ trust in the
domain name.

3 METHODOLOGY
To study the extent and the impact of misconfigurations in Ama-
zon S3 buckets in the wild, we automatically discover and verify
Amazon S3 buckets that have their content publicly listable. Our
methodology is depicted in Figure 2. First, we collect candidate
bucket names through three different methods (Section 3.1); then,
we filter the candidates that correspond to an existing bucket (scan-
ner), and verify whether the bucket is set as publicly readable or
publicly writable (inspector). Last, we inspect if the writable buckets
we found are referenced from publicly accessible websites, and, thus,
can be used to carry out resource infection attacks (Section 3.2).

3.1 Enumeration & Data Collection
First of all, we enumerate a representative subset of Amazon S3
buckets. This step is not trivial: Indeed, a public directory of valid
S3 bucket names is not available, and bucket names can be com-
posed of an arbitrary sequence of three or more characters. We
adopt three complementary approaches: First, we use mutations
over dictionaries to generate a list of possible, candidate, bucket
names, and verify whether they are valid through the Amazon S3
API. Secondly, we leverage web crawling to locate S3 buckets linked
or referenced from popular websites. Third, we leverage publicly
available sources (i.e., Amazon IP address ranges, VirusTotal In-
telligence,2 and RiskIQ3) to obtain passive DNS data, and look for
resolutions pointing to S3 domains.
Candidate Generation. To generate candidate names for buck-
ets, we use a mixture of acronym enumeration and generations of
variations over a word dictionary. First of all, we generate bucket-
name candidates by enumerating acronyms: We generate all the
possible combinations of words composed of 3 and 4 characters.
The rationale behind this step is that users tend to create short
and easy to remember names, or to use acronyms. Second, we start
from a dictionary of English words, and randomly mutate them
to generate more bucket names: We concatenate multiple words,
and randomly change one or more letters in a word. The rationale
is that, when a desired bucket name is already registered, users
tend to apply small modifications (e.g., removing a letter) to find
an available one. In particular, we use two types of mutations: (a)
we remove random letters from a word or concatenation of words,
and (b) we duplicate a letter in a random position. The number of
letters added or removed decreases exponentially in function of
the number of mutations already happened. Finally, using the same
enumeration and mutation techniques we generate others bucket
names adding prominent top-level domains (TLDs) at the ends of
generated names. TLDs are chosen with a probability proportional
to their prominence, i.e., more frequent TLDs such as .com have
higher probability to be used. This choice is due to the fact that,
when using a custom CNAME alias, a bucket must be named as the
subdomain pointing to it. This candidate generation process yields
two lists: with and without TLDs.
Web Crawling.We crawled the home pages of the top 1 Million
websites according to Alexa [1], to discover any resource linked
from S3 buckets. For crawling, we used Google Chrome in head-
less mode. Using a full-fledged browser that included a JavaScript
2https://www.virustotal.com/#/intelligence-overview
3https://www.riskiq.com/

https://www.virustotal.com/#/intelligence-overview
https://www.riskiq.com/


ACSAC ’18, December 3–7, 2018, San Juan, PR, USA A. Continella et al.

Dictionary

Crawler

Mutations

Enumeration

Candidates

Scanner

Existing & 
Public

Buckets

Inspector

Readable
Buckets

Writable
Buckets

PublicWWW
Website
Inspector

Vulnerable
Websites

Passive DNS

Candidate Generation

Web Crawling

Figure 2: Overview of our methodology to discover misconfigured buckets. First, we collect candidate bucket names (Sec-
tion 3.1); then, we discover existing buckets (Scanner), and verify whether they are publicly readable or writable (Inspector).
Last, we check if any writable bucket is referenced from a website, and, thus, can be used to carry out a resource infection
attack (Section 3.2).

interpreter allows the detection of links to S3 buckets built at run-
time. We also resolve the CNAME records of domains linked in
external resources and check whether they point to S3 buckets.
Moreover, we leverage Google “dorks” and PublicWWW4 to find
further websites containing references to subdomains of Amazon
S3 (i.e., bucket names).
Passive DNS. We downloaded the Amazon AWS IP address
ranges,5 and selected those assigned to the S3 service. Then, we
leveraged VirusTotal Intelligence and RiskIQ to perform reverse
lookup queries. In fact, VirusTotal runs its own passive DNS repli-
cation service, built by storing the DNS resolutions performed
by visiting URLs and executing malware samples submitted by
users [29]. For each IP address, VirusTotal and RiskIQ return a list
of domains that resolve (or have resolved) to that IP address. Among
such domains, we select those matching the S3 syntax (Figure 1)
and extract the bucket names.

3.2 Security Analysis
Scanner. Starting from the list of candidate bucket names, our
scanner builds the Amazon S3 bucket URLs according to the format
shown in Figure 1. Then, it sends a request over HTTPS to the
S3 API, and determines, according to the response, whether each
candidate bucket name is an existing bucket or not and, if the bucket
exists, whether it is public (i.e., object listing is enabled for non-
authenticated users). If the bucket does not exist, the API replies
with “NoSuchBucket” and a HTTP 404 status header; if the bucket
exists and is not publicly listable, the API returns an AccessDenied
error with a HTTP 403 status code (Figure 3); otherwise, it returns
an XML document with the bucket file listing (including file names
with extensions). Note that, as further discussed in Section 6, for

4https://publicwww.com/
5https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

HTTP/1.1 403 Forbidden
x-amz-bucket-region: ap-southeast-2
x-amz-request-id: 73E5693FA382F20D
x-amz-id-2: tMhK7yPboPa04kV/oypK9WVrYGqj8NR4QI7IP8QakzdCD
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Mon, 19 Mar 2018 13:22:24 GMT
Server: AmazonS3

<Error>
<Code>AccessDenied</Code>
<Message>Access Denied</Message>
<RequestId>4C4B01F64E808F69</RequestId>
<HostId>

zPQX00xzxUJLH704xQLZFg9toDHjPOBk+E1JZOR5xouInq
</HostId>

</Error>

Figure 3: Example of Access Denied response.

privacy reasons we do not access (i.e., read or store) any personal
file contained in such buckets.
Inspector. The Inspector analyzes the discovered existing and pub-
lic buckets, and checks their permission settings. Specifically, we
want to verify if the files in the buckets are readable and/or writable.
In order to safely test whether the files in a publicly listable bucket
are readable, the Inspector queries the API using the minimum
access level possible. Indeed, accessing users private files raises
important privacy and ethical considerations. Thus, we determine
whether a file is readable only by the returned status code. The
Inspector sends a HTTP HEAD request, which returns only the re-
sponse headers without retrieving the file content.

Since each file can have unique permissions, we cannot conclude
that the entire bucket is readable by verifying only one file. However,
verifying all the files would be too time-consuming (many buckets
contain hundreds of thousands of files). Hence, we randomly sample
and verify the readability of k files. If exactly k are readable, we

https://publicwww.com/
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html


There’s a Hole in that Bucket! ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

assume the entire bucket is readable. If less than k are readable, we
say that the bucket is partially readable. By setting the value of k ,
our tool can be configured according to different confidence levels.
Otherwise, we conclude that the bucket is not readable. We also
attempt to retrieve the access control list of each existing bucket
with a HTTP GET request to /?acl, to check whether it is publicly
readable and to study the access control policies. Note that the
access control list does not contain any user personal file.

To test whether an existing bucket is writable, there are no
other choices than trying to create a new object using a HTTP PUT
request, and checking if the operation is allowed. Note that our
Inspector does not modify or overwrite any existing object, thus
it is harmless for the bucket owner. Actually, it tries to create a
plaintext object containing a message that responsibly discloses the
security issue and explains how to fix it. To minimize the chances
of colliding with an existing object, the file name is a 128-byte
randomly generated string, and the Inspector checks whether an
object with the generated name exists before attempting to write.
Website Inspector. To study the prevalence of potential re-
source infection issues, we leverage our crawler and data
from PublicWWW to identify websites that load resources
from S3 buckets. Specifically, our crawler inspects the follow-
ing HTML elements: script::attr(src), link::attr(href),
a::attr(href), img::attr(src). Moreover, we queried Pub-
licWWW for pages containing S3 URIs, and then crawled the
matched pages. If the S3 buckets referenced by a website happen to
be writable, then that website is vulnerable to resource infection:
Attackers could tamper with existing, loaded resources to deface
the website (e.g., replacing an image) or deliver malicious content
(e.g., injecting an exploit kit in a client-side loaded resource).

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We implemented our tool in about 1,600 lines of Python code, lever-
aging its multiprocessing module to parallelize the analysis of
buckets. We leveraged Selenium WebDriver to automate a headless
instance of Google Chrome in our crawling. We used k = 30 in our
Inspector as the sample set size to determine if a bucket is fully
readable. Also, we leverage VirusTotal APIs to retrieve passive DNS
data. Finally, as an input dictionary to generate our candidates, we
leveraged the SCOWL (Spell Checker Oriented Word Lists) list of
American English words, as implemented in the Debian wamerican
package.6

We deployed our tool on a 40-core Intel Xeon machine with
378GB RAM, running Ubuntu 16.04. We performed the scanning of
S3 buckets and the analysis of the results between February and
June 2018.

4.2 Enumeration & Data Collection
In this section, we evaluate how each of our data collection method
contributed in discovering existing buckets.
Candidate Generation.We generated 8,600,448 candidate bucket
names. The enumeration of all possible combination of 3 and 4
characters covered 5.5% of the candidates. Single words from the

6https://packages.debian.org/sid/wamerican

Table 1: Scanning results summary.

Scan Data No. Elements

Generated Candidates 8,783,964
Existing Buckets 240,461
Public Buckets 34,145
Readable Buckets (Total) 27,492
Fully Readable Buckets 20,496
Partially Readable Buckets 6,996
Writable Buckets 6,599
Buckets with readable ACL 13,046
Non-listable buckets with readable ACL 5,843

dictionary covered 32.74%. Concatenation of two words covered
61.76% of the candidates. Among all of them, we applied a mutation
(i.e., adding or removing characters) to 31.64% of the candidates,
and we also duplicated candidates adding a TLD in 50% of the cases.
From this list of candidates, we identified 132,686 existing buck-
ets. Among these the acronyms contributed to the 3.76%, single
words to the 93.41%, and concatenation of two words to 2.83%. Of
the entire list of discovered bucket names, 62,061 (46.77%) were
generated applying at least one mutation. Then, we studied how
much each mutation contributed to the discovery of existing buck-
ets. Specifically, removing one or more characters from English
words contributed to the 37.55% of the discovered buckets, adding
one of more characters contributed to the 4.38%, and adding a TLD
contributed to the 4.84%.
Web Crawling.We collected 7,627 candidates from which we iden-
tified 2,468 existing S3 buckets. Specifically, we identified 2,196
distinct S3 buckets from crawling the Alexa top 1 Million visited
websites, and 353 different S3 buckets querying PublicWWW.7

Passive DNS. From the Amazon S3 IP address ranges, we collected
318,976 IP addresses. Among these, VirusTotal and RiskIQ had data
available for 21,558 IP addresses. However, among the 297,418 miss-
ing IP addresses, 296,520 are probably not allocated to any machine.
In fact, we sent ICMP echo requests (ping) to each IP address to
verify whether such hosts were available.8 Then, by querying Virus-
Total and RiskIQ for passive DNS data, from the 20,558 IP addresses
we obtained 651,643 domain names, 217,111 of which matched the
S3 syntax ( *.s3[-region].amazonaws.com). Finally, from such
domains we discovered 105,307 additional existing buckets.

4.3 Scanning Results
Table 1 shows a summary of the results of our scan. We generated
a total of 8,783,964 unique candidates, which allowed our Scan-
ner to discover 240,461 existing buckets. 34,145 of them (14.20%)
host publicly listed content. Out of these, we found that 27,492
buckets (80.51% of the publicly listable buckets, or 11.43% of the
existing buckets analyzed) contain readable files. Among these,

7We leveraged the free version of PublicWWW, which indexes the top 3M websites
and limits the results of complex queries.
8While we cannot certainly affirm that the hosts that did not respond to our ping
were unallocated or down, none of the IP addresses missing from VirusTotal and
RiskIQ replied, while other S3 addresses did, suggesting that Amazon S3 servers are
configured not to block ICMP requests.

https://packages.debian.org/sid/wamerican


ACSAC ’18, December 3–7, 2018, San Juan, PR, USA A. Continella et al.

0 10 20 30 40 50

us-east-1
eu-west-1
us-west-2

us-west-1
ap-southeast-1

ap-northeast-1
eu-central-1

ap-southeast-2
sa-east-1

us-east-2
ap-south-1

eu-west-2
ap-northeast-2

ca-central-1
eu-west-3

Percentage (%)

Figure 4: Distribution of the 240,461 buckets that we ana-
lyzed over the different regions.

20,496 (74.55%) are fully readable, while 6,996 (25.44%) are only
partially readable (i.e., less than k files are readable). Also, our In-
spector found 6,599 (2.74% of the existing bucket analyzed) writable
buckets.

Furthermore, we found that 13,046 buckets (5.43%), almost evenly
distributed between publicly listable and non-publicly listable, have
their access control list publicly readable (i.e., READ_ACL). We do
not deem this a security issue per se, as the permissions for the
anonymous account are easy to infer, and the ACL discloses only
the canonical ID and display name of the owner AWS account, as
well as the IDs of other authorized users. However, by analyzing
these ACL policies, we found that 3,415 buckets have their ACL
writable by the anonymous user and 3,446 buckets have their ACL
writable either by the anonymous user or by any authenticated
AWS user (we remark that checking whether an ACL is writable
is a “passive” operation, as it only requires to read the ACL XML
file). Out of these, 93 buckets are not writable neither by the anony-
mous user nor by any authenticated user, and 101 buckets are not
readable. This means that, for this small set of buckets, an attacker
may easily upload a new ACL, read or write any object, and change
the ACL back to the previous state. We also found out that, out
of the buckets with publicly readable ACLs, only 1,647 buckets
are granting any kind of permission to the generic authenticated
user. We suspect that this low number is due to the fact that the
AuthenticatedUser group is not readily accessible from the AWS
web console. Instead, 777 buckets are explicitly granting permis-
sions to other AWS accounts; although most bucket owners grant
permission only to a small number of accounts (median: 1 account,
average: 1.83 accounts), the maximum number of other accounts
we found explicitly listed in an ACL is 22. Only 1,128 buckets grant
write permission to the LogDelivery group: The great majority of
the buckets with readable ACLs has server access logging disabled
(the default option).
AWS Regions. Figure 4 shows the distribution across 15 AWS re-
gions of the 240,461 buckets that we discovered during our scan.

0 10 20 30

ap-south-1

us-east-1

ap-northeast-1

sa-east-1

ap-northeast-2

ap-southeast-1

eu-west-2

ca-central-1

ap-southeast-2

us-west-2

us-west-1

eu-central-1

eu-west-1

us-east-2

eu-west-3

Percentage (%)

Writability
Readability

Figure 5: Number of readable/writable buckets per region,
normalized by the number of existing buckets of the region.
This is an indicator of how much a region is “misconfig-
ured.”

Instead, Figure 5 shows the amount of readable and writable buck-
ets per region, normalized by the number of existing buckets of
the same region. This represents an indicator of how many secu-
rity issues a certain region has. Interestingly, some regions (e.g.,
ca-central-1, eu-west-2) have a higher percentage of readable
buckets, and others (e.g., ap-northeast-2, ap-south-1) have a
higher percentage of writable ones.

File Types and Data Leakage in Public Buckets. The public
buckets we found contain 5,319,033,170 objects in total. To under-
stand which file types are more at risk while preserving owners’
privacy, we conservatively relied on file name extensions. Table 2
shows the 20 most common file extensions in public buckets, along
with their popularity in readable and writable buckets. Then, we
aggregated extensions in higher-level file types (e.g., Images, Code).
For instance, we mapped .jpg, .jpeg, .png, and .gif to the Image
file type. Figure 6 shows the percentage of buckets containing at
least one file of four common file types (Image, Code, Executable,
Text-data). In particular, about 19% of writable buckets contain ex-
ecutables or source code. This is particularly dangerous because
attackers can tamper with such files, injecting malicious code that
users may end up executing. Table 3 instead shows a summary
of the potential data leaks that we identified in 27,492 readable
buckets.

4.4 Vulnerable Websites
Crawling the home pages of the Alexa top 1Million visited websites,
we found 4,056 websites that load resources from 2,196 distinct S3
buckets. Similarly, querying PublicWWW, we found 1,178 websites
that load resources from 353 different S3 buckets. In total we col-
lected 5,196 websites relying on 2,468 buckets. Then, we analyzed



There’s a Hole in that Bucket! ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 2: Top 20 most common file extensions in public buckets, and relative percentages in readable, and writable buckets.

File Type Public Readable Writable

.jpg 2,910,267,542 (54.71%) 2,558,262,624 (59.95%) 235,351,378 (31.16%)

.gz 287,907,921 (5.41%) 197,515,636 (4.63%) 11,592,423 (1.54%)

.png 269,629,214 (5.07%) 242,195,095 (5.68%) 64,326,347 (8.52%)

.jpeg 120,727,775 (2.27%) 113,709,980 (2.66%) 10,080,934 (1.33%)

.json 76,712,690 (1.44%) 75,143,122 (1.76%) 1,557,601 (0.21%)

.txt 67,364,012 (1.27%) 66,602,965 (1.56%) 2,892,145 (0.38%)

.html 56,107,720 (1.05%) 51,083,841 (1.20%) 33,230,611 (4.40%)

.pdf 55,077,872 (1.04%) 38,526,176 (0.90%) 13,162,004 (1.74%)

.gif 45,673,393 (0.86%) 42,632,503 (1.00%) 4,958,141 (0.66%)

.webp 36,731,079 (0.69%) 36,678,489 (0.86%) 1,921,274 (0.25%)

.hll 35,386,943 (0.67%) 0 (0.00%) 35,386,943 (4.69%)

.mp3 24,339,969 (0.46%) 23,359,348 (0.55%) 2,537,729 (0.34%)

.js 23,753,672 (0.45%) 9,404,205 (0.22%) 2,061,558 (0.27%)

.xml 19,816,767 (0.37%) 18,170,613 (0.43%) 10,423,540 (1.38%)

.ts 18,414,462 (0.35%) 17,457,380 (0.41%) 2,030,012 (0.27%)

.text 18,223,671 (0.34%) 18,223,563 (0.43%) 213 (0.00%)

.mp4 15,310,901 (0.29%) 14,378,514 (0.34%) 1,618,013 (0.21%)

.log 10,499,793 (0.20%) 8,691,642 (0.20%) 5,252,765 (0.70%)

.zip 10,323,009 (0.19%) 5,185,148 (0.12%) 2,821,950 (0.37%)

.docx 8,324,004 (0.16%) 5,831,401 (0.14%) 2,162,751 (0.29%)

No ext. 1,063,128,472 (19.99%) 626,339,218 (14.68%) 272,213,269 (36.04%)

Total 5,319,033,170 4,267,620,813 755,204,687

Text-data Images Code Executables
0

20

40

60

Pe
rc
en
ta
ge

(%
)

Public Buckets
Readable Buckets
Writable Buckets

Figure 6: Percentage of buckets containing at least one file of
four file types. We aggregated file extensions to higher-level
file types.

such buckets to verify whether they are writable, and what the im-
pact for the websites’ users is. The results, summarized in Table 4,
are as follows:
• Defacement.We found 175websites vulnerable to defacement.
In fact, these websites load, from writable buckets, resources
that attackers can manipulate to alter the layout and content
of the websites. While this may seem harmless, it can have

a dangerous security and reputation impact. Consider the
homepage of the website of an important newspaper. If an
attacker succeeds in modifying the caption image, she can
inject fabricated content or a picture that contains phishing
text (e.g., asking users to visit a certain website or to reveal
private information). Hence, users would see such content
on the homepage, and likely trust its content since it comes
from a well-known source.
• Code Injection. The scenario is even more dangerous when
websites load JavaScript or any other kind of executable

Table 3: Examples of sensitive exposure we identified.

No. No.
Type File Buckets Resources

Key Material .pem, 84 335
.p12, 17 98
.pfx, 13 112
.key (Keys) 17 361

Databases .sql (Dumps) 249 2,825

Backups .bak (Generic) 169 8,911

Financial .qdf (Quicken Data) 5 5
Information

Password DB .kdbx (KeePassX) 4 4
.kdb (KeePass) 1 1



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA A. Continella et al.

code from writable buckets. In fact, in this case attackers can
inject malicious code into the loaded resources and indirectly
deliver it to the users visiting the website. We found 39
vulnerable websites that load JavaScript, HTML, executable,
PDF, and GZIP resources from writable buckets.
• Subdomain Takeover. In this scenario, attackers can register
non-existing, linked buckets, and directly load content into
vulnerable websites. This can expose to both defacement and
malicious injection, depending on the loaded resource. We
found 13 websites loading resources from dangling buckets.

Examples. We found the website of a national South American
newspaper loading two images in the homepage from a writable
bucket. Hence, an attacker could tamper with these images to in-
ject and display arbitrary content into the newspaper homepage.
Another example is the website of a company that provides secured
background screening solutions, which we found loading JavaScript
and CSS resources in the homepage from a writable bucket, there-
fore being exposed to defacement and injection attacks.

5 MITIGATION
While the specific countermeasure for misconfigurations in S3 buck-
ets is trivial (e.g., change the access control policy), the results of
our experiments highlight a typical situation that arise when de-
velopers adopt new technologies and services. As also shown by a
recent study [10], our analysis unveils the need for stricter default
policies and automated tools that check for common configuration
errors and warn users of their security implications. For instance,
in July 2017 Amazon AWS sent emails to the owners of public
buckets to warn them of the security implications that such access
policy may have [6]. Similarly to what has been implemented in
major browsers, which mark HTTP pages as Not Secure [25], we
need mechanisms that notify users when their access policies are
potentially misconfigured. In accordance with this rationale, the
AWS web console marks as “Public” any bucket that has any ACL
permission granted to the anonymous user; furthermore, Amazon
recently released for free the AWS Trusted Advisor, a tool to help
their customers better secure their data by providing S3 bucket per-
missions check [3]. This is certainly a good step. However, the AWS
Trusted Advisor lacks fine-grain inspection capabilities. In fact,
setting bucket permission as publicly readable does not necessarily
bring security or privacy issues, as long as no sensitive data is stored
on the bucket. Moreover, Amazon AWS recently allowed users to
enable files encryption on their buckets [4]. However, this feature

cannot be enabled when files are meant to be publicly accessible,
for instance when they are loaded by websites.
A Tool for Bucket Owners. As part of this research, we release a
web-application9 through which bucket owners can safely and pri-
vately check the access policy of their S3 buckets, verifying whether
the buckets are public, readable, or writable. Different from AWS
Trusted Advisor, our tool not only checks for bucket permissions,
but also verifies whether readable buckets might contain sensitive
information by looking at file extensions. For instance, we trigger
an alert for .pem files, database dumps, backups, and so on. We
foresee this approach to be embedded into cloud storage services
backends and applied at upload time, therefore preventing users
from unintentionally uploading sensitive data. Note that, the web
application only accesses the minimum amount of data in order to
provide the service to the users.
A Tool for Client-side Protection. While the aforementioned
tool can be used by buckets owners to analyze security issues
of their own buckets, writable buckets can affect the security of
end-users when resources of such buckets are loaded by websites.
Hence, we designed a client-side solution to protect end-users. We
designed a browser extension that, at runtime, checks whether
the rendered page loads resources from S3 buckets (by matching
the URL formats) and queries our backend if such buckets are
writable. If so, we consider the resources contained in the bucket
untrusted and prevent loading them. We implemented our browser
extension10 for Google Chrome, allowing users to set different
aggressiveness levels (e.g., do not load untrusted resources, ask
before loading, only show a warning). Specifically, we leverage
the chrome.webRequest.onBeforeRequest.addListener API
to register a callback that gets called before loading resources, and
we check whether they are loaded from a S3 bucket. In order to
identify untrusted buckets, our Chrome extensions downloads from
our backend a list of writable buckets. When providing such black-
list, our backend hashes all the bucket names. In the same way,
our Chrome extension hashes the bucket name to be checked and
verifies whether the hash is contained in the blacklist. In this way,
our backend does not reveal in plaintext the names of the writable
buckets. At the same time, since the check is performed client-side,
this mechanism prevents privacy issues for users (i.e., sending infor-
mation about the websites they visit). The list of untrusted buckets
can be updated daily. As a result, when a website tries to load a

9https://bucketsec.necst.it/
10https://github.com/necst/truster

Table 4: Number of vulnerable websites and relative resources loaded from writable buckets.

Loaded Resources

Vulnerability JP
G

PN
G

JS CS
S

G
IF

IC
O

SV
G

JS
O
N

H
TM

L

EX
E

G
ZI
P

PD
F

To
t

Defacement 130 80 26 12 13 8 6 3 1 - - - 175
Injection - - 26 - - - - - 1 1 1 12 39
Dangling 3 6 2 - 1 1 - - - - - 1 13

Total 130 80 26 12 13 8 6 3 1 1 1 12 191

https://bucketsec.necst.it/
https://github.com/necst/truster


There’s a Hole in that Bucket! ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Amazon 
S3

Bucket
Owner

Browser

Extension
hashed untrusted buckets

is my bucket
secured?

Figure 7: Overview of our mitigation. Bucket owners
can check their access policies through a web-application.
Client-side users avoid loading resources hosted in un-
trusted, writable buckets through a browser extension.

resource from an untrusted bucket (i.e., writable), the extension
prevents it from being loaded.

Alternatively, the Chrome extension can query our backend for
unknown buckets, which are analyzed in real-time. However, this
option raises the aforementioned privacy issues for users. In fact,
doing so our backend would collect data about the users browsing.
Hence, we let the users choose whether to activate this option.

Figure 7 shows a high-level overview of our mitigation mecha-
nism, within the two scenarios: buckets owners that want to check
the issues in their buckets, and end-users that want to be protected
from loading untrusted resources.

6 DISCUSSION
Ethical Consideration. By conducting a large scan, our work
raises important ethical considerations, similarly to other previous
measurements [26]. In fact, the only way to test whether a bucket is
writable is to write a file and check if such operation has succeeded.
Therefore, we carefully considered the impact of our experiments
and we took several precautions to prevent potential harms.

We never attempted to read users data. In fact, to test whether
a certain file is readable we perform a HTTP HEAD request, which
returns only the HTTP response headers without the body (i.e., file
content), and we only check the HTTP response status code. Indeed,
our analysis of sensitive exposure relies only on the file extensions,
identifying those ones that characterize typical sensitive data, and
never on the data (that we do not access nor store).

We only accessed S3 buckets using HTTPS, hence avoiding ex-
posing users to man in the middle risks. When testing whether
buckets are writable, we only wrote a new, plaintext file containing
text that discloses the security issue and informs on how to fix it.
The file’s name is a 128-byte long randomly generated string. Also,
to avoid overwriting any existing file, we checked via a HEAD that
our filename did not exist on the remote bucket. Therefore, we did
not modify any user data.

Finally, we do not publish the list of affected buckets as this
could be abused, putting users at risk. Instead, as discussed in the
following paragraph, we notified responsible entities to timely and
properly fix access policies.
Disclosure. First, we contacted webmasters of the vulnerable
websites that we identified. We visited each website to obtain

a contact email, and, in the case we did not find any email ad-
dress, we sent the notification to both info@domain.com and
webmaster@domain.com. Regarding the misconfiguration of S3
buckets, we were not able to contact the owners as the bucket
name is not publicly linked to any personal information (owner
name or email). To address this, we disclosed our findings to Ama-
zon AWS, which acknowledged the issues and proceeded to notify
affected users. We also anonymized references to misconfigured
buckets and we do not release any information that can be abused
by malicious attackers.
Limitations. Our crawler only looked at the home pages of the top
1 Million domains. We plan to extend our evaluation by scraping
the linked pages of each website in future work. While analyzing
passive DNS data, we did not study whether further domains have
a CNAME record that indirectly points to a S3 bucket. We plan to
extend this study in future work.

7 RELATEDWORK
Amazon S3. The problem of open S3 buckets was first raised by
Robin Wood in a 2011 blogpost [31], which showed the results of a
scan based on a small word-list. More recently, information security
companies performed similar analyses [24, 28], and various projects
are available on open-source code hosting platforms (e.g., GitHub)
to verify the settings of S3 buckets or to help discovering open S3
buckets, e.g., for penetration testing engagements. However, such
studies lack deep data analysis and scientific methodology. We filled
this gap by performing the first comprehensive, large-scale analysis
of the usage of cloud storage in the wild.
Security-oriented Web Measurement. Large-scale web mea-
surement is a common tool in the security community to study
phenomena such as the extent of common (mis)configurations with
an impact on the security, as well as to understand the shape and
relationships of various ecosystems.

In 2014, Nikiforakis et al. [21] investigated the ad-based URL
shortening ecosystem, highlighting the dangers of this type of
services due to unpredictable—and oftenmalicious—advertisements.
More recently, Dell’Amico et al. [8], motivated by recent attacks
to SaaS and IaaS cloud service providers and by the increasing
adoption of such services, investigated the dependencies between
websites and cloud services, establishing a set of metrics to assist
website and service operators in making informed choices about
their Internet/cloud service dependencies and to minimize their
risk exposure.

The use of JavaScript in web applications—often hosted in third-
party services, such as CDNs or even S3 buckets—has been studied
through various lenses: On one hand, Nikiforakis et al. [20] ana-
lyzed the implications of the inclusions of remote JavaScript code,
while, on the other hand, Lauinger et al. [15] studied the security
implications of the usage of (client-side) JavaScript libraries and
how the attack surface of websites is affected by vulnerabilities in
included libraries.

With respect to misconfiugurations, Eshete et al. [12] audited
the security configuration settings of server environments in web
application deployment and development; Springall et al. [26] pre-
sented a comprehensive analysis of how anonymous FTP has been
deployed in the real world, discovering that there are more than



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA A. Continella et al.

13.8M FTP servers on the IPv4 address space, of which 1.1M (8%)
allow anonymous access and often expose sensitive data, with im-
plications similar to those of misconfigured Amazon S3 buckets.
Liu et al [16] performed a large-scale measurement to quantify the
security threats posed by dangling DNS records, and, more recently,
Borgolte et al. [5] exploited (temporarily) dangling DNS entries
pointing to cloud IP addresses to deceive domain validation and
obtain TLS certificates.

8 CONCLUSIONS
In this paper, we investigated security implications of using the
Amazon S3 service, one of the most popular service offering cloud
storage. We focused on identifying misconfigurations that affect
users’ privacy and security, with the goal of raising the awareness
of a real-world security problem and warn users of its security im-
plications. To do so, we developed an automated tool that discovers
public S3 buckets and verifies their access policies. We performed a
comprehensive, large-scale analysis of more than 240,000 buckets
discovering that about 14% of them are public, about 11% are also
readable, and about 2% writable. We then studied the consequences
of such misconfigurations. We found more than 200 readable buck-
ets leaking sensitive data, such as private keys and database dumps.
Then, we studied how attackers can exploit writable buckets to
harm end-users. We found that 19% of the writable buckets con-
tain executables or source code, allowing attackers to tamper with
such files and inject malicious content (e.g., backdoors). Even more
dangerous, we found 191 vulnerable websites that load resources
from writable buckets, and that could potentially be defaced or
deliver malicious content. We concluded our study by proposing
a mitigation to protect end-users from this threat. Specifically, we
developed a browser extension that, communicating with our back-
end, verifies if the resources requested from a visited website come
from an untrusted, writable, bucket, and prevents loading such
insecure resources.

ACKNOWLEDGMENTS
We would like to thank our reviewers for their valuable comments
and input to improve our paper. We would also like to thank the
Amazon AWS security team for their prompt reply.

Politecnico di Milano received funding for this project from
the European Union’s Horizon 2020 research and innovation
programmender the Marie Skłodowska-Curie grant agreement
nr. 690972.

REFERENCES
[1] Alexa. The top 500 sites on the web. https://www.alexa.com/topsites.
[2] Amazon. Amazon s3. https://aws.amazon.com/s3/.
[3] Amazon. Aws trusted advisor’s s3 bucket permissions check is now

free. https://aws.amazon.com/about-aws/whats-new/2018/02/aws-trusted-
advisors-s3-bucket-permissions-check-is-now-free/.

[4] Jeff Barr. New amazon s3 encryption & security features. https:
//aws.amazon.com/blogs/aws/new-amazon-s3-encryption-security-features/,
Nov 2016.

[5] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and Giovanni
Vigna. Cloud strife: mitigating the security risks of domain-validated certificates.
In Proceedings of Internet Society Symposium on Network and Distributed System
Security (NDSS), 2018.

[6] AWS For Business. Aws sends warning emails to s3 bucket users. https:
//www.awsforbusiness.com/aws-sends-warning-emails-s3-bucket-users/, Jul
2017.

[7] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,
Alessandro Barenghi, Stefano Zanero, and Federico Maggi. ShieldFS: A self-
healing, ransomware-aware filesystem. In Proceedings of the ACM Annual Com-
puter Security Applications Conference (ACSAC), 2016.

[8] Matteo Dell’Amico, Leyla Bilge, Ashwin Kayyoor, Petros Efstathopoulos, and
Pierre-Antoine Vervier. Lean on me: Mining internet service dependencies
from large-scale dns data. In Proceedings of the ACM Annual Computer Security
Applications Conference (ACSAC), 2017.

[9] Bob Diachenko. Global communication software and service provider
left massive amount of data online. potentially exposing millions of sub-
scribers. https://mackeepersecurity.com/post/global-communication-software-
left-massive-amount-of-data-online, Sep 2017.

[10] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig.
Investigating System Operators’ Perspective on Security Misconfigurations. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2018.

[11] DigitalOcean. Spaces: Beautifully simple object storage. https:
//www.digitalocean.com/products/spaces/.

[12] Birhanu Eshete, Adolfo Villafiorita, and KomministWeldemariam. Early detection
of security misconfiguration vulnerabilities in web applications. In Proceedings of
the International Conference on Availability, Reliability and Security (ARES), 2011.

[13] Google. Google cloud storage. https://cloud.google.com/storage/.
[14] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina Lin-

dorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. MineSweeper:
An In-depth Look into Drive-by Cryptocurrency Mining and Its Defense. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2018.

[15] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. Thou shalt not depend on me: Analysing the use
of outdated javascript libraries on the web. In Proceedings of Internet Society
Symposium on Network and Distributed System Security (NDSS), 2017.

[16] Daiping Liu, Shuai Hao, and Haining Wang. All your dns records point to us:
Understanding the security threats of dangling dns records. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS), 2016.

[17] Federico Maggi, Marco Balduzzi, Ryan Flores, Lion Gu, and Vincenzo Ciancaglini.
Investigating web defacement campaigns at large. In Proceedings of the ACM
ASIA Conference on Computer and Communications Security (ASIACCS), 2018.

[18] Microsoft. Azure storage: Secure cloud storage. https://azure.microsoft.com/en-
us/services/storage/.

[19] Shaun Nichols. Guys, you’re killing us! la times homicide
site hacked to mine crypto-coins on netizens’ pcs. https:
//www.theregister.co.uk/2018/02/22/la_times_amazon_aws_s3/, Feb 2018.

[20] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: large-scale evaluation of remote javascript inclusions. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2012.

[21] Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Zubair Rafique, Wouter
Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna, and Stefano Zanero.
Stranger danger: exploring the ecosystem of ad-based url shortening services. In
Proceedings of the International Conference on World Wide Web (WWW), 2014.

[22] Dan O’Sullivan. System shock: How a cloud leak exposed accenture’s business.
https://www.upguard.com/breaches/cloud-leak-accenture, Nov 2017.

[23] PublicWWW. PublicWWW: Source Code Search Engine. https:
//publicwww.com/.

[24] Rapid7. There’s a hole in 1,951 amazon s3 buckets. https:
//blog.rapid7.com/2013/03/27/open-s3-buckets/, Mar 2013.

[25] Emily Schechter. A secure web is here to stay. https:
//security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html, Feb 2018.

[26] D. Springall, Z. Durumeric, and J. A. Halderman. Ftp: The forgotten cloud.
In Proceedings of the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2016.

[27] Liam Tung. Mongodb ransacking starts again: Hackers ransom 26,000 unsecured
instances. https://www.zdnet.com/article/mongodb-ransacking-starts-again-
hackers-ransom-26000-unsecured-instances/.

[28] Cyril Vallicari. Impact study - amazon s3 aws buckets configura-
tion. https://www.httpcs.com/fr/actualites-cybersecurite/impact-study-aws-
buckets-amazon-s3-configuration, Feb 2018.

[29] VirusTotal. VirusTotal Documentation: Searching. https:
//support.virustotal.com/hc/en-us/articles/115002739245-Searching.

[30] Mark Ward. Exposed amazon cloud storage clients get tip-off alerts. http:
//www.bbc.com/news/technology-42839462, Feb 2018.

[31] Robin Wood. Analysing amazon’s buckets. https:
//digi.ninja/blog/analysing_amazons_buckets.php, May 2011.

https://www.alexa.com/topsites
https://aws.amazon.com/s3/
https://aws.amazon.com/about-aws/whats-new/2018/02/aws-trusted-advisors-s3-bucket-permissions-check-is-now-free/
https://aws.amazon.com/about-aws/whats-new/2018/02/aws-trusted-advisors-s3-bucket-permissions-check-is-now-free/
https://aws.amazon.com/blogs/aws/new-amazon-s3-encryption-security-features/
https://aws.amazon.com/blogs/aws/new-amazon-s3-encryption-security-features/
https://www.awsforbusiness.com/aws-sends-warning-emails-s3-bucket-users/
https://www.awsforbusiness.com/aws-sends-warning-emails-s3-bucket-users/
https://mackeepersecurity.com/post/global-communication-software-left-massive-amount-of-data-online
https://mackeepersecurity.com/post/global-communication-software-left-massive-amount-of-data-online
https://www.digitalocean.com/products/spaces/
https://www.digitalocean.com/products/spaces/
https://cloud.google.com/storage/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://www.theregister.co.uk/2018/02/22/la_times_amazon_aws_s3/
https://www.theregister.co.uk/2018/02/22/la_times_amazon_aws_s3/
https://www.upguard.com/breaches/cloud-leak-accenture
https://publicwww.com/
https://publicwww.com/
https://blog.rapid7.com/2013/03/27/open-s3-buckets/
https://blog.rapid7.com/2013/03/27/open-s3-buckets/
https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html
https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html
https://www.zdnet.com/article/mongodb-ransacking-starts-again-hackers-ransom-26000-unsecured-instances/
https://www.zdnet.com/article/mongodb-ransacking-starts-again-hackers-ransom-26000-unsecured-instances/
https://www.httpcs.com/fr/actualites-cybersecurite/impact-study-aws-buckets-amazon-s3-configuration
https://www.httpcs.com/fr/actualites-cybersecurite/impact-study-aws-buckets-amazon-s3-configuration
https://support.virustotal.com/hc/en-us/articles/115002739245-Searching
https://support.virustotal.com/hc/en-us/articles/115002739245-Searching
http://www.bbc.com/news/technology-42839462
http://www.bbc.com/news/technology-42839462
https://digi.ninja/blog/analysing_amazons_buckets.php
https://digi.ninja/blog/analysing_amazons_buckets.php

	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

