
SoK: Automated TTP Extraction from CTI Reports – Are We There Yet?

Marvin Büchel†,1, Tommaso Paladini†,2,6, Stefano Longari2, Michele Carminati2, Stefano Zanero2,
Hodaya Binyamini4, Gal Engelberg4, Dan Klein4, Giancarlo Guizzardi3, Marco Caselli5, Andrea

Continella3, Maarten van Steen3, Andreas Peter1, and Thijs van Ede3

1Carl von Ossietzky Universität Oldenburg, 2Politecnico di Milano, 3University of Twente,
4Accenture Labs, 5Siemens AG, 6NEC Laboratories Europe

Abstract

Cyber Threat Intelligence (CTI) plays a critical role in sharing
knowledge about new and evolving threats. With the increased
prevalence and sophistication of threat actors, intelligence has
expanded from simple indicators of compromise to exten-
sive CTI reports describing high-level attack steps known
as Tactics, Techniques and Procedures (TTPs). Such TTPs,
often classified into the ontology of the ATT&CK frame-
work, make CTI significantly more valuable, but also harder
to interpret and automatically process. Natural Language Pro-
cessing (NLP) makes it possible to automate large parts of
the knowledge extraction from CTI reports; over 40 papers
discuss approaches, ranging from named entity recognition
over embedder models to generative large language models.
Unfortunately, existing solutions are largely incomparable as
they consider decisively different and constrained settings,
rely on custom TTP ontologies, and use a multitude of cus-
tom, inaccessible CTI datasets. We take stock, systematize
the knowledge in the field, and empirically evaluate existing
approaches in a unified setting for fair comparisons. We gain
several fundamental insights, including (1) the finding of a
kind of performance limit that existing approaches seemingly
cannot overcome as of yet, (2) that traditional NLP approaches
(possibly counterintuitively) outperform modern embedder-
based and generative approaches in realistic settings, and (3)
that further research on understanding inherent ambiguities
in TTP ontologies and on the creation of qualitative datasets
is key to take a leap in the field.

1 Introduction

In today’s rapidly evolving cyber landscape, the sophistica-
tion and frequency of cyber threats are increasingly growing,
challenging the ability of cybersecurity teams to anticipate,
identify, and respond to new threats. Cyber Threat Intelligence
(CTI) is the collection, analysis, and use of information about

†Authors contributed equally to this work.

current and potential threats in the cyber landscape to help or-
ganizations detect, prevent, and respond to attacks. A central
component of CTI is the understanding of Tactics, Techniques,
and Procedures (TTPs), which describe the high-level goals
(tactics) of adversaries, the way they attempt to achieve them
(techniques), and the specific methods or processes they em-
ploy to carry out their objectives (procedures). Unfortunately,
information on TTPs is often only given in unstructured form
as part of human-written textual CTI reports, which must be
manually analyzed and extracted. As the volume and com-
plexity of CTI reports increase, management, structuring, and
timely extraction of valuable knowledge from these reports
has become a critical task for preventive and reactive mea-
sures in threat scenarios [92]. The MITRE ATT&CK frame-
work [89] has emerged as the de facto standard for structuring
TTPs from CTI reports, offering a comprehensive knowledge
base and ontology of adversarial tactics and techniques from
real-world observations that are widely recognized by the cy-
bersecurity community. Such a knowledge base provides secu-
rity professionals with a common language for understanding,
categorizing, and mitigating cyber threats. By mapping CTI
reports to the TTPs in this framework, organizations can ef-
fectively use this information to better anticipate, detect, and
respond to threats [4]. Manually mapping CTI reports to TTPs,
however, is an error-prone task that requires security expertise
and human resources, which many organizations cannot allo-
cate. Hence, a lot of research deals with the automation of this
knowledge extraction process. Existing solutions are based
on Natural Language Processing (NLP) techniques, ranging
from Named Entity Recognition (NER) [28, 38, 58, 59, 85] to
data-driven classification [37, 68, 72, 77, 79] and generative
Large Language Models (LLMs) [14, 15, 24, 26, 88], all of
which, when adapted to the CTI domain, are shown to be
promising in automatically extracting TTPs from CTI reports.

As the field advances, however, the diverse landscape of
NLP techniques for TTP extraction has become increasingly
complex. Researchers have proposed numerous approaches,
each with distinct benefits and limitations. Existing solutions
turn out to be largely incomparable as they are often tai-

lored to specific constrained settings, relying on custom TTP
ontologies and (confidential) CTI datasets, sometimes even
using different evaluation metrics (see Section 2 for a de-
tailed analysis). This diversity and incomparability hinder a
comprehensive understanding of the current state of the field.

To address this problem, we contribute with:

• a Systematization of all existing NLP-based solutions
for knowledge extraction from CTI reports (i.e., the state-
of-the-art in automatic TTP extraction) based on a de-
tailed literature analysis; we classify the existing works
along different dimensions, identify their benefits and
limitations, and provide guidelines and future directions,

• a Technical Implementation of the different NLP ap-
proaches for in-depth comparison and for fostering of
future research on security-specific NLP challenges, and

• an Empirical Evaluation of the existing NLP ap-
proaches, including emerging ones such as (generative)
LLMs, in a unified setting enabling fair comparisons.

Key insights of our research include

1. even when considering only the top-50 most common
TTPs, the best-performing solutions reach a precision of
around 80% for a recall of around 66%; for less common
TTPs, performances quickly drop (esp. for precision,
going way below 40% in realistic settings),

2. possibly counterintuitively, in a scenario that replicates
real-world settings, traditional NLP approaches still no-
tably outperform modern embedder-based and genera-
tive NLP approaches, and

3. while the literature focuses on developing evermore
novel NLP-based technologies to improve performances,
our results strongly suggest that further research efforts
on understanding inherent ambiguities in used ontologies
as well as on the creation of large, qualitative datasets
are urgently needed to take a leap in the field.

2 Systematization

We systematize existing work into three overarching classes
of NLP approaches used for TTP extraction based on their
NLP objective. First, we discuss Named Entity Recognition
(NER), which aims to identify explicitly mentioned entities
in the text. Second, we look at Classification approaches
that can deal with both explicit and implicit references but
require more (often labeled) data for training, which is scarce
in the CTI domain. Finally, we look at Generative LLM
approaches that are adapted to the domain of TTP extraction.

2.1 Literature Collection

To collect literature, we searched the most common search
platforms for security-related works DBLP1 and Google
Scholar2 using the query (“[cyber] threat intelligence” OR

“CTI” OR “TTP” OR “att&ck” OR “threat report” OR (“at-
tack” AND (“pattern” OR “technique” OR “behavior” OR

“graph”)) AND “extraction” OR “mining” OR “classifica-
tion”). Here, we focused on the inclusion of threat intelli-
gence, as well as attack techniques and the extraction thereof.
To limit the search to relevant papers, we only searched
for works published after 2015, the release of the MITRE’s
ATT&CK framework, and limited the search to 100 entries for
each keyword, resulting in a total of 1223 papers. Thereafter,
we performed a manual evaluation of the titles and abstracts
to exclude papers outside of our field of study, resulting in
440 relevant works. Next, we excluded papers that (1) do not
propose an approach for extracting TTPs, and (2) do not pro-
cess CTI reports as the input of the TTP processing pipeline.
To expand the final search, we performed a citation-based
search [46], which led to finding a total of 38 relevant papers
and 2 blog articles [82, 99]. While we acknowledge that this
literature collection may not be complete, the resulting papers
cover a wide range of techniques used in the field that are
representative of the state-of-the-art in TTP extraction.

Related Works. CTI literature discusses approaches for
different purposes than TTP extraction. NER approaches
are often used to extract CTI keywords from online dis-
cussions [23, 73], or to construct cybersecurity knowledge
graphs [74]. Classification approaches are also developed to
classify Indicators of Compromise (IoCs) [67, 109], perform
topic modeling [21], identify threat actors [70], or collect CTI-
relevant documents from unstructured collections [43]. The
more recent Generative approaches are proposed for the de-
velopment of CTI “AI-assistants” [40] or for the identification
of relevant CTI [87]. We exclude these from our analysis, as
we limit ourselves purely to TTP extraction.

2.2 Named Entity Recognition (NER)

NER approaches use a combination of rule-based and ML-
based techniques to process the semantical meaning of a text
and thereby identify explicitly mentioned entities, in our case
TTPs. The advantage is that NER clearly indicates where a
specific TTP is mentioned in a CTI report and that it allows
a high level of manual control over which TTPs are detected
as rules can easily be adapted. The disadvantage is that these
methods cannot detect implicit references to TTPs and are
often less flexible when processing text that is phrased differ-
ently from what is expected.

1https://dblp.org
2https://scholar.google.com/

https://dblp.org
https://scholar.google.com/

We also observed the attacker disabling Windows Defender by
modifying the Windows Registry on compromised systems.

Tokenization POS
Tagging Lemmatization Related Word

Detection Parsing NER

verb modify modification T1112
modify

Windows Registry

attacker

Figure 1: Generic Named Entity Recognition (NER) pipeline.

2.2.1 Methods

Figure 1 shows the different steps that are taken by various
NER approaches to TTP extraction from CTI reports. We
note that different NER approaches do not necessarily employ
all steps and often customize the rules and implementations
used by each step. The first step of all NER approaches is to
tokenize the text to distinguish between punctuation, individ-
ual words3 (referred to as tokens), and to separate sentences,
which allows subsequent processing of the text [95]. Next,
tokens are tagged with their part-of-speech (POS), indicat-
ing whether words are nouns, verbs, adjectives, etc. 4 [64].
These POS tags allow NER approaches to differentiate be-
tween words with different meanings, e.g., in the example
of Figure 1 “attacks” refers to the plural of the noun “attack”
rather than the action (i.e., verb) “to attack”. POS tags also
improve lemmatization approaches, which aim to reduce dif-
ferent variations of the same word to their base form that
can be used to recognize named entities later on [8, 76]. E.g.,
in the given example “executing” should be detected when
searching for “execute” as they are different variations of
the same verb. However, lemmatization is limited to tokens
with the same POS tag and base form; it cannot find words
with similar meaning (e.g., synonyms). Therefore, various
approaches include related word detection [25] that allows
NER to find e.g., “execute” (verb) when searching for “execu-
tion” (noun). Next, some approaches leverage parsing, which
identifies the sentence subject, objects, and other relations
within the text [19,48,71]. Parsing is required when searching
for named entities consisting of multiple tokens or even en-
tire sentences, e.g., matching “escalation of privileges” when
searching for “privilege escalation”. Moreover, parsing can
be used to identify relations between extracted TTPs, but this
is considered outside of the scope of this work. Finally, NER
leverages these preprocessing steps to identify named entities
using either rules or ML for classifying individual tokens into
named entities [54].

State-of-the-art. Using these techniques, we classify the state-
of-the-art in NER-based TTP extraction in Table 1. Here, we
make a distinction between semantic approaches that use
rules for extracting TTPs and hybrid approaches that locate
named entities in the text (i.e., perform NER), but do so by

3Sometimes tokenization uses multiple tokens to split up words outside
its predefined vocabulary (e.g., “executing” becomes “execute” + “-ing”).

4See https://universaldependencies.org/u/pos/ for a full list of
POS tags.

Table 1: Components implemented by related work.
Type Approach Tok. POS Lem. Rel. Par. NER Data Ontology

Se
m

an
tic AttacKG [58] ❍ ❍ ❍ ✕ ❍ ● Custom Custom

Extractor [85] ● ● ● ❍ ● ● [20, 66] Custom
TTPDrill [38] ● ● ✕ ● ❍ ● Custom Custom

H
yb

ri
d

ActionMiner [39] ❍ ❍ ✕ ✕ ❍ ● Custom Custom
CASIE [86] ❍ ❍ ❍ ✕ ● ● Custom Custom
CyberEntRel [3] ❍ ✕ ✕ ❍ ✕ ● Custom Custom
EX-Action [103] ● ❍ ✕ ✕ ❍ ● Custom ATT&CK
Ghazi et al. [32] ❍ ❍ ✕ ✕ ✕ ❍ Custom Custom
ThreatKG [27] ● ✕ ✕ ✕ ● ● Custom Custom
TIMiner [106] ❍ ✕ ❍ ● ❍ ● Custom Custom

✕ action is not present or not mentioned. Tok. = Tokenization Rel. = Related word detection
❍ action is present, but not domain-specific. POS = Part-of-Speech Par. = Parsing
● action is present and domain-specific. Lem. = Lemmatization NER = Named Entity Recognition

machine-learning classification on individual tokens in the
text. We note that we still categorize these techniques as NER
because they solely focus on explicitly mentioned entities and
do not find implicit references. From this table, we find that
approaches leverage different subsets of discussed techniques
making it difficult to assess the influence of individual steps.
Moreover, all approaches are tested on a different dataset and
are labeled with a different ontology making comparison of
the approaches difficult. In Section 4, we will investigate the
individual NER methods and evaluate to which extent they
contribute to TTP extraction.

2.3 Classification

As the name suggests, classification approaches process CTI
reports and classify them into a set of predetermined TTPs.
Reports can be classified in their entirety, per sentence, or
even per token (see Section 3). Initial works split text into
tokens similar to NER, converted them to an unordered set
(known as a Bag-of-Words), and extracted features such as
the Term Frequency (TF), specifying the occurrences of each
term (i.e., token), or Term Frequency-Inverse Document Fre-
quency (TF-IDF) [42], which discounts generic tokens that
relate to many classes and promotes specific tokens related
to a specific class. Subsequently, these works feed the ex-
tracted features into a machine learning model (e.g., SVM)
to perform classification [7, 52, 61]. Later works transform
tokens, sentences or full pieces of text into a vector repre-
sentation called embeddings [30, 31, 52]. Word2Vec [65]
learned token representations by analyzing surrounding to-
kens in unlabeled pieces of text, whereas other works such as
BERT [22] improved upon these embeddings by leveraging
attention networks to find relations between tokens. The idea
is that these embeddings encapsulate the meaning of text by
not analysing the individual token, but the entire context. Sub-
sequently, these embeddings can be compared directly with
embeddings of target classes in an unlabeled manner or be fed
to a classifier if the text is labeled. Moreover, the embeddings
can even be fine-tuned for classification when neural network
layers are used for classification.

https://universaldependencies.org/u/pos/

T1562.001

We also observed the attacker disabling Windows Defender by
modifying the Windows Registry on compromised systems.

T1112
T1562.001

T1547.001

Labeled

Embedder Model

T1112
T1547.001

Unlabeled

Annotated
Dataset

Data
Augmentation

Figure 2: Generic classification model pipeline using either
labeled data to train a classification network on top of embed-
dings, or directly compares the embeddings with embeddings
of target classes in an unlabeled approach.

2.3.1 Methods

In this section, we focus on the more recent embedder-based
classification as the majority of state-of-the-art research lever-
ages this approach. In addition, Orbinato et al. [72] perform
a wide analysis on this task by comparing classifiers relying
on traditional NLP techniques [7, 30, 52] and transformers
encoders, observing that the latter achieve the most competi-
tive results. Thus, Figure 2 shows the pipeline for classifying
TTPs from CTI documents using embeddings which are ob-
tained from a (pre-trained) encoder. These embeddings are
either used to train a classifier that requires labeled data (left),
or can be used in a Semantic Text Similarity (STS) approach
that compares text to descriptions of the target class, e.g.,
descriptions of ATT&CK techniques (right).

Embedder model. The model used to generate the text em-
beddings plays a large role in classification performance as
embeddings that do not capture the semantic meaning of
a text will be useless for predicting relevant TTPs. Subse-
quently, other models such as RoBERTa [62] have suggested
improvement in the training process and use larger datasets
to create better generic embeddings. However, such models
have not been trained to handle the terminology of domain-
specific texts such as CTI reports [75]. Therefore, models
such as SecBERT [60], and CTI-BERT [75] have been pre-
trained from scratch on cybersecurity texts. Moreover, with
continual pre-training [44], already pre-trained models can
be adapted for a domain-specific task, resulting in works
such as SecureBERT [2], CyBERT [78], DarkBERT [41],
and CySecBERT [10]. Finally, models can be also fine-tuned
for specific tasks by training them for a specific purpose,
resulting in works such as Sentence-BERT (SBERT) [81]
for semantic similarity computations, and consequent adap-
tations for cybersecurity such as ATTACK-BERT [1], and
SentSecBERT [49]. For the sake of readability, we refer to

Table 2: Classification approaches for TTP extraction.
Paper Model Augment. Mult. Ont. CTRs Data Gran.

Art. OOD

L
ab

el
ed

rcATT [52] Word2Vec [65] ✕ ✕ ● ATT. ● Custom Doc.
Ayoade et al. [7] None ✕ ✕ ● ATT. ● Custom Doc.
SeqMask [30],
Ge et al. [31]

FastText [12] ✕ ✕ ● ATT. ● Custom Doc.

TRAM [82, 99] SciBERT [11] ✕ ✕ ● ATT. ● [82] Sent.
Liu et al. [61] Custom ✕ ✕ ● ATT. ● Custom Doc.
TTPHunter [79] BERT-based [22] ✕ ✕ ✕ ATT. ● Custom Sent.
TIM [101] SBERT [81] ✕ ✕ ✕ ATT. ✕ Custom Sent.
Tang et al. [91] BERT [22] ✕ ✕ ✕ ATT. ● Custom Sent.
Alves et al. [6] BERT-based [22,84] ✕ ✕ ✕ ATT. ✕ Custom Sent.
Yan et al. [98] BERT [22] ✕ ✕ ● ATT. ● Custom Sent.
Kim et al. [45] None ● ✕ ● ATT. ✕ [82], Cust. Doc.
TTPXHunter [80] SecureBERT [2] ● ✕ ✕ ATT. ● Custom Sent.
You et al. [100] CTI-BERT [75] ✕ ● ● ATT. ✕ [82], Cust. Sent.
ALERT [77] SciBERT [11] ✕ ✕ ✕ ATT. ✕ Custom Sent.
Li et al. [56] BERT-based [22,84] ✕ ✕ ● ATT. ✕ [82], Cust. Sent.
CTI-to-
MITRE [72]

Multiple [60, 65] ✕ ✕ ● ATT. ● [82], Cust. Both

HMCAT [35] SecureBERT [2] ● ✕ ✕ ATT. ✕ Custom Both
MITREtrieval [37] RoBERTa [62] ✕ ✕ ● ATT. ● Custom Sent.
Fayyazi et
al. [24]

BERT-based [2, 62] ✕ ✕ ● ATT. ✕ Custom Sent.

U
nl

ab
el

ed

LADDER [5] SBERT(MPNet) [81] – – ● ATT. ✕ Custom Sent.
Kumarasinghe
et al. [49]

SentSecBERT [49] – – ● ATT. ✕ [82], Cust. Sent.

Abdeen et al. [1] ATTACK-BERT [1] – – ● ATT. ✕ Custom Sent.

Legend: (●) Element is present. (✕) Element is not present or unclear from
text. (–) Element does not apply. (Augment.) Data Augmentation. (Mult.)
Multi-label. (Ont.) Ontology. (CTRs) TTP extraction from real-world CTI
reports. (Gran.) Granularity. (Doc.) Document-level. (Sent.) Sentence-level.

all of the aforementioned pre-trained models as “CTI-specific
models”. In general, such CTI-specific models have been
often shown to outperform other general language models
on cybersecurity-related tasks [10, 73, 75], among which the
extraction of TTPs from CTI reports [80].

Labeled approaches. Text classification models combine the
embedding model with a feed forward network having a num-
ber of neurons equal to the number of classes. This consists
in solving a multi-label text classification problem, where the
input text is a single sentence. Even though BERT and its CTI-
specific derivates are pre-trained, the chosen model should be
nonetheless fine-tuned on the downstream NLP task with a
labeled dataset. Fine-tuning requires finding optimal hyperpa-
rameters (i.e., non-trainable parameters), and several works
have already studied optimal hyperparameter spaces, and the
effects of different choices [6,90]. This approach is largely em-
ployed in literature [6,24,37,56,61,72,77,79,80,82,98,100].
In TTP extraction, the desired classifier should be able to pro-
vide 637 independent outputs – one for each technique and
sub-technique – as this task is a multilabel classification prob-
lem, i.e., each sentence can be associated with multiple attack
patterns. However, to the best of our knowledge, there is no
public dataset that contains annotations for all the existing
ATT&CK techniques and sub-techniques, posing a limitation
to the capabilities of such an approach.

Data augmentation. As supervised machine learning models,
labeled approaches suffer performance-related issues related
to insufficient labeled data and class imbalance. In this con-
text, datasets are scarcely available, and the distribution of
TTPs in CTI documents is heavily skewed toward a small
subset of techniques [100]. Training data can be augmented

with artificial samples to improve class representation and
reduce overfitting, though it may introduce noise. Natural
language data augmentation strategies typically consists in
replicating sentences with text variations (e.g., synonyms,
rephrasing) that preserve the meaning of the original sen-
tence [96]. Some research works have adopted augmentation
strategies that consist in generating synthetic samples, such
as the Easy Data Augmentation (EDA) algorithm [45, 96],
custom synonym substitution approaches based on Masked
Word Prediction [55, 80], or text rephrasing with generative
LLMs [35]. You et al. [100], instead, propose a method to aug-
ment training data with Out-of-Distribution (OOD) samples
taken from the ATT&CK procedure descriptions and show
that such auxiliary data is effective even if text styles differ.
Unlabeled approaches. Another approach solves TTP extrac-
tion as an information retrieval problem, such as Semantic
Textual Similarity (STS), an NLP task that consists in measur-
ing semantic equivalence between pairs of sentences [9]. In
short, with a SBERT-based model [81], the similarity between
input sentences embeddings and those of the ATT&CK TTP’s
descriptions can be calculated with cosine distance. Then,
the sentences whose similarity exceeds a threshold can be as-
signed to the corresponding class. This threshold can be either
treated as a simple hyperparameter and selected by minimiz-
ing the classification error on a validation set [5], or learned
with a shallow logistic regression model [1]. Kumarasinghe et
al. [49], instead, use this approach by chaining multiple mod-
els of increasing complexity for retrieving similar sentences
to build a sentence annotation pipeline. Compared to labeled
approaches, this approach has the advantage of not requiring a
manually annotated dataset to fine-tune the model, but only to
select the optimal threshold. Although this approach could, in
principle, detect all possible TTP classes, Alam et al. [5] and
Abdeen et al. [1] restrict their classifiers to a smaller subset,
covering only 10.36% to 6.43% of the Enterprise matrix.
State-of-the-art. Table 2 presents related works following the
text classification approach for TTP extraction. Most studies
adopt the ATT&CK framework as the reference ontology and
rely on labeled data despite the scarcity of labeled datasets,
often creating custom datasets. The majority use sentence-
level analysis, where the classifier input is a single sentence
from a CTR. Some studies incorrectly treat the problem as
a single-label multi-class classification task, limiting models
to identifying only one TTP per sentence. However, prior re-
search [5, 38] observed that individual sentences can describe
multiple techniques. Only few works have focused on dataset
imbalance issues and explored various data augmentation
strategies to increase the performances of their text classifiers.
Most works have opted for the inclusion of artificial data in-
side training data, while only one work shows the inclusion
of OOD data in the training set. Note that data augmentation
only applies to labeled approaches. BERT-based models, and,
in particular, CTI-specific models are mostly chosen for build-
ing such classifiers, motivated by superior performances on

the respective test datasets. In conclusion, we observe that
comparing the results and methods from state-of-the-art re-
search is challenging. This is mainly because most studies use
custom datasets that are often publicly released. Additionally,
text classifiers are usually tested on custom datasets contain-
ing only individual sentences, which does not fully reflect
their ability to extract information from real-world reports.

2.4 Generation
Generative approaches leverage LLMs to produce new text,
rather than classifying text into predetermined classes. The
advantage of these models is that they often do not need to
be fine-tuned on large datasets of labeled data, but need few
to no examples [13, 47] or can be adapted using techniques
discussed in Section 2.4.1. However, due to the novelty of
these approaches there exist only a limited number works that
use this approach (see Section 2.4.1).

2.4.1 Methods

Figure 3 gives a brief overview of the techniques in a
generative LLM pipeline. While generative LLMs only re-

I’ve found the
techniques
T1112,
T1562.001: the
adversary [...]

Annotated
Dataset

[Supervised Fine-Tuning (SFT)]

Data Augmentation

What is the MITRE ATT&CK
Technique ID for the following
statement:

“We also observed the attacker
disabling Windows Defender by
modifying the Windows Registry
on compromised systems.”

Use this information as
context:

“T1112: Modify Registry -
Adversaries may interact with
the Windows Registry to hide
configuration information
within Registry keys [...]”

Examples:
- {Sentence}: {ID}
- {Sentence}: {ID}

ATT&CK
Descriptions

[RAG]

Generative LLM

[FSP]

Figure 3: Generative Large Language Model (gLLM)
pipeline.

quire a prompt to produce results, additional methods have
proven useful to increase performance and reduce hallucina-
tions [13, 83]. We have categorised existing work according
to the methods they use (Table 3) and find that often, only a
subset of methods is used.
Prompt Engineering. Prompt engineering is the process of
optimizing input prompts for LLMs to improve task perfor-
mance without modifying the model or its parameters. As a
general rule, instructions should be clearly expressed, com-
plex tasks should be broken down into smaller tasks, and
the model should be helped to draw logical conclusions step
by step with a chain-of-thought prompt 5. Overall, there are

5https://platform.openai.com/docs/guides/prompt-enginee
ring

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering

Table 3: Generative approaches for TTP extraction.
Title LLM Model Ontology SFT FSP RAG CTRs Doc. Data

aCTIon [88] GPT-3.5Turbo ATT&CK ✕ ✕ ✕ ● ✕ Cust.
CTINexus [15] GPT-4 MALOnt ✕ ● ● ● ● Cust.
AECR [14] ChatGLM36B ATT&CK ● ✕ ✕ ● ✕ Cust.
Fayyazi et al. [24] GPT-3.5 ATT&CK ✕ ✕ ● ✕ ✕ Cust.
Fengrui et al. [102] Llama2 ATT&CK ● ✕ ✕ ✕ ✕ Cust.
IntelEX [97] GPT-4omini ATT&CK ✕ ✕ ● ● ● Cust.
Kumarasinghe et al.
[49]

Multiple ATT&CK ✕ ● ✕ ✕ ✕ Cust.

AttacKG+ [105] GLM-4 ATT&CK ✕ ✕ ✕ ● ✕ Cust.
Fieblinger et al. [26] Multiple Custom ● ● ✕ ● ✕ Cust.

Legend: (●) = Method is present, (✕) = Method is not present, SFT =
Supervised Fine-Tuning, FSP = Few-Shot Prompting, RAG =

Retrieval-Augmented Generation, CTRs = TTP extraction from real-world
CTI reports, Doc. = One-Shot inference of whole CTI report (in all stages).

Data = dataset used for evaluation.

many different methodologies on how to customize prompts
to either achieve a desired result or improve the performance
of a specific task, which are explored in surveys [83].

Supervised Fine-Tuning. Supervised Fine-Tuning (SFT)
of LLMs involves tailoring pre-trained models to specific
tasks or domains using labeled datasets, refining their general-
purpose knowledge to achieve specialized performance. By
prioritizing domain-specific tasks, even small SFT models can
beat those that are more than 10x larger [14]. SFT requires
a sufficient amount of high-quality data and also sufficient
computing resources for training. In addition, the training
data must be transformed into natural language for training
(e.g. question-answer pairs), which can also have an impact
on the quality of the training.

In-Context Learning. In-Context learning is a way to pro-
vide the model with new knowledge at short-term after the
pre-training, without having to further train the weights of
the models using a large amount of data. In addition to the
instruction, further context is added to the prompt, which can
help to solve the problem or even contains the solution itself.

Few-Shot Prompting. Few-shot prompting is a method that
provides examples of the task with suitable answers. The
advantage is that the LLM not only gains a clearer under-
standing of what exactly needs to be searched for but also
aligns its behavior, ensuring the output format and style match
the desired specifications. Few-shot prompting can improve
performance without much effort, as Brown et al. [13] already
discovered in 2020. However, few-shot prompting can also
lead to accuracy instability in the results, as Zhao et al. [107]
demonstrate, the prompt format, the examples and even the
order of the examples influence the effectiveness of few-shot
prompting. This few-shot example bias was also observed
when extracting CTI entities from Cheng et al. [15].

Retrieval-Augmented Generation. LLM have strong abil-
ities to recall knowledge from the training process, but en-
counter challenges like being imprecise, having hallucination
or outputting outdated knowledge in a difficult to understand
black box manner. To prevent this, Retrieval-Augmented Gen-
eration (RAG) is an approach that helps generative models

by retrieving relevant external data during inference, using
semantic similarity to identify the most relevant information,
without requiring new training. The retrieved knowledge is
then used to enrich the prompt, with typically the top-k most
relevant elements being added to provide the LLM with con-
textually accurate and up-to-date information for generating
responses. As RAG has proven to be successful, it is devel-
oping very quickly and new methods are constantly being
developed that are summarized in surveys [29].

State-of-the-art. Table 3 shows all the related-work that does
TTP extraction with a generative LLM. It is evident that the
existing works have employed a variety of methods, with no
clear overarching trend emerging, except that each utilizes
its own custom dataset for evaluation. It is noticeable that
if supervised fine-tuning is in use [14, 102], then all other
methods aimed at In-Context Learning (like FSP, RAG) are
not used. With aCTIon [88], a generative LLM is used to
summarize the content due to the small context size, so that
another unmodified LLM can then predict all ATT&CK tech-
niques at document level with a static prompt. CTINexus [15]
use a three-level LLM Agent System to extract relationships
between entities in addition to TTP extraction with dynamic
RAG-like FSP. AECR [14] have fine-tuned a small 6 billion
model by SFT to outperform much larger general models like
GPT4 from OpenAI and to reduce hallucination by adding
a linear head layer for classification. Advanced TTP Analy-
sis [24] compared BERT-like models to generative LLMs with
RAG, finding that BERT-like models had higher precision,
while generative LLMs had higher recall, but were negatively
impacted by incorrect RAG entries. In Few-Shot Learning of
TTPs [102] the authors created augmented data with GPT4,
which they used to train a LLama2-7B base model with SFT
to successfully increase performance. IntelEX [97] combines
RAG with a multi-agent system to increase precision. Ku-
marasinghe et al. [49] found that their multi-level classifier
outperformed GPT-4, in terms of recall@3 metric with 0.81
against 0.44. AttacKG+ [105] uses a four-stage generative
LLM pipeline to extract TTPs and entity relationships to build
a knowledge graph. Fieblinger et al. [26] found that prompt
engineering significantly impacts FSP performance, but its ef-
fectiveness varies greatly across different models. Meanwhile,
SFT underperforms due to limited data availability.

2.5 Literature Takeaways
Most previous research has relied on labeled text classification
approaches trained on annotated datasets, despite their limited
availability, with some works focusing on methods to improve
their performance (e.g., pre-training on CTI corpora, data aug-
mentation). Initial approaches focused on the challenges re-
lated to the adaption of traditional NLP techniques, but rarely
included methods specific to cybersecurity language. More
recent approaches have explored novel generative models, due
to their proved superior language understanding capabilities,

adopting and justifying different methods with no obvious
common pattern. Overall, results are rarely demonstrated on
public datasets, hindering comparison and reproduction.

3 Empirical Analysis: Setup

We have shown that there exist various approaches to ex-
tracting TTPs from CTI reports. However, due to the wide
variety of approaches, datasets, ontologies onto which TTPs
are mapped and evaluation scenarios, it remains unclear to
what extent methods leveraged by these approaches affect the
performance on TTP extraction. Therefore, in this section,
we design an experimental setup that allows us to compare
the different approaches and measure the influence of their
individual methods. Given the variety in methods, and cus-
tomization to specific ontologies and datasets, we do not aim
to compare individual works, but instead provide a setup by
which we can analyze and understand the individual methods,
as well as their advantages and limitations with respect to
TTP extraction from CTI reports. Therefore, we decided to
not directly re-implement existing solutions but rather im-
plement and evaluate their underlying core methods for ex-
tracting the TTPs. This allows us to evaluate how suitable
existing methods are for the task of TTP extraction with-
out taking data-specific and ontology-specific optimizations
into account. However, we must establish a framework by
which we measure the performance of individual methods.
This includes choosing an ontology of TTPs that allows us
to evaluate whether TTPs are correctly extracted; a (labeled)
dataset used for measuring the performance; and metrics that
allow us to compare different methods and understand their
advantages and limitations.

3.1 Ontology
There are many standards for threat actions by academics and
industry. The STIX 2.1 6 format has widely been adopted as
a standard format by many organizations to describe cyber
threat intelligence as it provides a generic and extendable
framework. However, many other, more specific models and
ontologies exist (often expressed in STIX 2.1), such as used
by MISP 7 to express objects and galaxies and MITRE’s
ATT&CK [89], D3FEND 8, CAPEC 8, CWE 8 and CVE 8

frameworks. The ATT&CK framework focuses mainly on
TTPs, common Threat Groups, and Software and forms the
de facto standard for expressing TTPs. The ATT&CK frame-
work consists of a matrix that maps procedures to techniques
and techniques to corresponding tactics. These TTPs are
based on real-world observations. Due to the older datasets
in use (discussed later in Section 3.2), we follow ATT&CK
Enterprise Version 14.1.

6https://oasis-open.github.io/cti-documentation/
7https://www.misp-project.org/
8https://{d3fend,capec,cwe,cve}.mitre.org/

Table 4: Comparison of MITRE ATT&CK labeled datasets

Dataset Gran. #CTRs #Sent. #Labels
TA T/ST S G

AnnoCTR [50] Word 120 4,491 12 133 63 38
TRAM2 [82] Sent. 150 19,011 ✕ 50 ✕ ✕
CTI-to-MITRE [72] Sent. ✕ 12,945 ✕ 188 ✕ ✕
Kumarasinghe et al. [49] Sent. ✕ 12,006 ✕ 410 ✕ ✕
rcATT [52] Doc. 1,490 ✕ 12 215 ✕ ✕
MITREtrival [37] Doc. 700 ✕ 14 165 ✕ ✕

Legend: (Gran.) Granularity of labels. (T) Techniques. (ST)
Sub-Techniques. (TA) Tactics. (G) Groups. (S) Software.

3.2 Datasets

The selection of public datasets containing cybersecurity
reports labeled according to the ATT&CK framework is
limited, as shown in Table 4. The largest and most known
dataset comes from the MITRE corporation and has been
released as part of a project focused on performing automatic
TTP extraction, known as Threat Report ATT&CK Mapper
(TRAM) [82]. The dataset contains original CTI reports with
experts’ annotations on individual sentences, and whole doc-
uments, allowing for the evaluation of approaches that op-
erate on different granularity levels. However, the dataset
contains only 50 (sub-)techniques from the ATT&CK frame-
work that most frequently appear in real documents [82]. An-
noCTR [50] represents a similar effort, with annotation for
more (sub-)techniques (133), and other information (e.g., ad-
versary tactics, malware, threat actor groups), but its size is
sensibly smaller. Other datasets, such as MITREtrival [37] and
rcATT [52], are not suitable for sentence-based methodologies
due to their exclusive document-level labeling, and automated
or unvalidated labeling processes. CTI-to-MITRE [72] and
Kumarasinghe et al. [49] have a large variety of unique (sub-
)techniques but lack sentences without techniques, which is
relevant for replicating a realistic evaluation scenario. There-
fore, we select TRAM2 and AnnoCTR for our experimental
validation, as they possess the best overall features. We divide
the TRAM2 reports into a training and a test set, following the
standard 80-20 split ratio. This results in 3,829 of the 19,178
technique labels being allocated to the test set. Entire reports
are randomly assigned to either the training or test set to main-
tain compatibility with document-based approaches and eval-
uation metrics while ensuring that the context of each report
remains intact. For AnnoCTR, we refer to the splits proposed
by the authors [50]. We do not combine TRAM2 with datasets
proposed by other works [49, 72], because they lack real CTI
report sentences. While non-technique sentences can be man-
ually extracted from MITREtrieval [37] or rcATT [52], adding
them to these datasets breaks contextual integrity and affects
context-based approaches. In conclusion, we rely solely on
real-world CTI datasets to ensure consistency.

https://oasis-open.github.io/cti-documentation/
https://www.misp-project.org/

3.3 Metrics
Recognizing ATT&CK (sub-)techniques requires a multi-
label classification setting, whether at the document or sen-
tence level, as multiple labels can apply simultaneously. Given
the imbalanced class ratios in our experimental datasets (Sec-
tion 3.2), accuracy is not a meaningful metric. Instead, we use
Precision, Recall, and the F1-Score, which provide a more
accurate representation of performance. Precision measures
the correctness of predictions, while Recall indicates the pro-
portion of correct labels found, and the F1-Score represents
the harmonic mean of these two metrics. Let P be the set
of predicted labels and T the set of true labels. Precision is
defined as Precision = |T ∩P|/|P|, while Recall is defined as
Recall = |T ∩P|/|T |. The harmonic mean, the F1-Score, can
then be defined as follows: F1 = 2 Precision·Recall

Precision+Recall . We calcu-
late the F1-Score per document. For sentence-based models,
sentence-level predictions are combined and compared to the
ground truth, while document-based models provide predic-
tions directly at the document level. The final F1-Score is
obtained by averaging document-level scores across all docu-
ments. Note that the average F1 score cannot be calculated
from the average Recall and Precision.

4 Empirical Analysis: NER

In this section, we evaluate to what extent the aforementioned
NLP pipeline is able to detect TTPs in CTI reports and study
the contribution of the individual pipeline components.We
discuss each component, the use case-specific adaptations to
identify TTPs, and their influence on the detection process.

4.1 Methods and Adaptations
We recall that NER approaches apply several techniques, often
in a pipeline, to process raw text when performing NER. How-
ever, the individual components can be adapted to domain-
specific use cases. Here, we discuss potential adaptations for
extracting TTPs from CTI reports.
Tokenization. Tokenization splits strings of text into words
and sentences that allow NER to identify words as entities.
Traditionally, tokenization uses a preset vocabulary combined
with rules and exceptions to deal with punctuation, affixes,
and word boundaries. While CTI reports are often written
in natural English language, they contain parts such as IP
addresses, hashes or other Indicators of Compromise (IoCs)
that are not necessarily covered by generic methods but would
be useful to be recognized as individual tokens in further
processing. Therefore, we adapt the tokenizer to detect IoCs
using regular expressions (available in our repository).
Part-of-Speech Tagging. Identifying part-of-speech (POS)
tags allows NER to distinguish e.g., actions (verbs) from
entities (nouns). These tags are often assigned using a combi-
nation of rules (closed class POS tags) and machine learning

models (open class tags). While POS tagging generally does
not require much adaptation, we include a list of exceptions
based on the ATT&CK framework to correct for special use
cases9, such as the scheduling software "at" which would be
detected as an adposition, but should be recognized as a noun.
However, Section 4.2 shows that POS tagging has limited
influence on the performance of NER approaches.
Lemmatization. Lemmatization reduces tokens to a base
form to ensure that different forms of words can be identified
by NER (e.g., identifying “attacking” when looking for “at-
tack”). In this work, we pay special attention to IoCs, which
in CTI reports are often defanged (e.g., an IP address is writ-
ten as 127[.]0.0.1) to ensure these do not accidentally trigger
anti-virus systems or are accessed by humans. Instead, dur-
ing lemmatization we “refang” these IoCs to ensure different
defang methods are considered equivalent during NER.
Related Word Detection. Besides different forms of words,
NER should also recognize words with the same intent (e.g.,
when recognizing “executing code”, “running” is a relevant
synonym of executing; “killing”, however, is not). There are
two main approaches to identifying word relationships: using
knowledge bases of manually identified relations and using
text embeddings. We focus on the creation of a knowledge
base as text embeddings used and evaluated for classification-
based approaches in Section 5.2. Therefore, we adapt Word-
Net [25], a database capturing semantic relations between
terms, by limiting it to terms present in the ATT&CK frame-
work and all the synonyms of these terms manually identified
to be relevant to the cybersecurity domain. We identified 3,200
unique terms in the ATT&CK framework, of which 1,237
contained one or more synonyms in WordNet. For overlap-
ping terms, we found a total of 2,369 matching synonym sets
that include a total of 1,428 unique terms in 5,465 synonym
relations. These synonyms can be used to broaden the search
for named entities, which will be evaluated in Section 4.2.
Parsing. The parsing component identifies the semantic re-
lations between words within sentences, e.g. the subject
and object of a sentence. While there exist domain-specific
approaches for parsing, such as Semantic Role Labeling
(SRL) [33] to attach domain-specific roles to parts of a sen-
tence, this is not required for NER. Therefore, in this work,
we only evaluate generic parsing methods.
Named Entity Recognition. Using the previous components
and their adaptations, we can perform NER by defining target
classes (in our case, ATT&CK techniques) and searching for
explicit references to those classes in the CTI reports. Here we
make a distinction between two cases: single-token entities
and subphrase matching. For single-token entities we simply
match on the lemma or related word of the known entity. In the
case of subphrase matching, we can either perform an exact
match, e.g., find the term “Privilege Escalation“ or leverage
parsing to detect different sentence orders (e.g., “escalating

9The full list of exceptions is available in our repository

privileges”) or even ignore irrelevant intermediate tokens such
as “The privileges of the attacker were escalated”. We lever-
age parse trees to only detect direct relations between terms
to prevent detecting false positives such as “Command and
Control” which could otherwise be detected in the sentence
“The user controlled their program through the command-line
interface.” Section 4.2 discusses the difference in performance
for these approaches.

4.2 Evaluation

We perform an ablation study to determine the contribution
of each pipeline component to the overall NER performance.
Here, we disable one of the components and compare the
drop in performance compared to using the full pipeline. We
evaluate the performance of NER using the TRAM2 dataset
as discussed in Section 3.2. While the NER approach does not
require any training data (and therefore could theoretically
use the full dataset for evaluation), we limit the evaluation
to the test part of the dataset used in Sections 5.2 and 6.2 to
ensure a fair comparison between the different approaches.

Ablation Study. Table 5 shows the results of the ablation
study in which we compare the full pipeline with both a base
pipeline that performs exact matching, as well as pipelines
with a single component disabled. We find that exact match-
ing is the most precise, i.e. will more rarely find techniques
that are not present, due to their explicit mentioning. How-
ever, this also results in a lower recall compared to the other
approaches, where we find that components sacrifice preci-
sion for an increase in recall. This is especially notable in
the lemmatization and parsing components which improve
matching for individual tokens and subphrases respectively.
Finally, we find that disabling the related word component
can actually improve performance in terms of both precision
and F1-score, meaning that synonyms may not always be
relevant when detecting named entities. In short, individual
components especially contribute to improving the recall of
NER approaches at the cost of false detections.

Table 5: Ablation study for NER pipeline.
AnnoCTR (%) TRAM2 (%)

Approach Prec. Rec. F1 Prec. Rec. F1

Full pipeline 43.50 70.96 53.94 65.42 57.83 61.39

Base pipeline 47.26 66.25 55.17 70.50 47.29 56.61

No POS 40.11 71.01 51.26 65.22 56.60 60.61
No Lemmatization 53.88 66.90 59.69 69.23 48.45 57.00
No Related Words 45.46 68.99 54.81 67.69 57.51 62.19
No Parsing 40.28 64.92 49.71 65.36 49.16 56.12

5 Empirical Analysis: Classification

In this section, we compare and discuss the performance of
the two main text classification methods for the extraction of
TTPs presented in Section 2.3.

5.1 Methods and Adaptation

As discussed in Section 2.3, text classification approaches
rely on different methods. The following sections present the
adaption of state-of-the-art approaches.

Embedder model. We retrieve the main publicly available
BERT-based models that have been adopted in CTI literature
and subdivide them into categories that reflect the nature of
the dataset they have been pre-trained on. We also include a
model among the highest-ranking models for semantic text
similarity according to the MTEB leaderboard [69]. The full
list of models is available in Appendix D.

Labeled text classification. We replicate the common la-
beled text classification approach proposed in Table 2 [6, 56,
72, 77, 79, 80, 98, 100]. Each pre-trained BERT model is com-
bined with a classification head, a dense layer with neurons
matching the number of labels (50 for TRAM2 and 118 for
AnnoCTR), and a sigmoid activation function to output log
probabilities. We fine-tune each model on the training set
with a learning rate of 2∗10−5 and a batch size of 16. These
values are concordant with the ones used in other literature
works [6, 72], and with those proposed by studies on this
topic [90]. To address label imbalance, we also evaluate the
inclusion of a weight for positive labels in the loss function.
For fine-tuning, we use 20% of the training data for valida-
tion and train for up to 100 epochs with early stopping and a
patience parameter to prevent overfitting.

Data augmentation. We replicate two data augmentation
strategies: one based on the inclusion of artificial data and
the other on Out-of-Distribution (OOD) data. Note that many
synthetic data generation strategies exist, but we focus on text
rephrasing with generative LLMs, which have gained traction
in NLP research [17]. For a more in-depth analysis of these
strategies, we refer to related survey efforts [53, 108]. For
the first strategy, we use the approach of Hao et al. [35] to
generate synthetic variations of the TRAM2 dataset using
the LLama-3.370B model. We then select sentences with co-
sine similarity between 0.3 and 0.910 to the original samples
using SBERT (MPNet), and include them while preserving
the original label distribution. For the second strategy, we
follow You et al. [100] by including procedure descriptions
from the ATT&CK framework with corresponding labels as
OOD data. The resulting training sets are 63.06% and 22.24%
larger than the original TRAM2 training set.

10Hao et al. [35] use 0.3 and 0.8, however, we observed that with 0.8 the
size of the augmented dataset did not increase by a sufficient margin.

Table 6: Test results of labeled approaches. Please note that
since TRAM2’s model has been already trained on a different
split of the TRAM dataset, on such dataset, we test the model
as provided by the authors.

AnnoCTR (%) TRAM2 (%)

Model Dom. F1 Prec. Rec. F1 Prec. Rec.

CyBERT [78] CTI 52.28 50.51 58.28 62.72 52.09 87.16
CySecBERT [10] CTI 62.75 60.75 67.86 69.74 79.35 66.76
DarkBERT [41] CTI 54.90 68.73 49.51 66.67 78.95 63.55
SecBERT [60] CTI 55.01 59.39 54.80 63.67 53.28 83.86
SecRoBERTa [60] CTI 50.28 58.17 46.65 59.86 47.88 87.73
SecureBERT [2] CTI 58.44 70.94 53.13 70.24 74.55 70.67
TRAM2 (SciBERT) [82] CTI 52.69 73.11 44.87 66.64 82.38 57.51
BERTBase, Cased [22] Gen. 50.24 73.58 43.21 66.55 82.56 60.33
BERTBase, Uncased [22] Gen. 52.77 49.72 60.15 63.69 53.44 86.64
RoBERTaBase [62] Gen. 50.00 70.56 41.57 62.05 77.61 54.86
RoBERTaLarge [62] Gen. 54.26 66.03 50.31 70.55 77.59 68.39
XLM-RoBERTaBase [62] Gen. 53.58 66.58 48.08 57.13 43.82 92.70
XLM-RoBERTaLarge [62] Gen. 57.32 75.41 48.90 61.93 81.73 53.42
SciBERTCased [11] Sci. 56.67 74.87 49.22 61.61 51.08 83.28
SciBERTUncased [11] Sci. 59.07 62.38 59.94 62.20 52.89 82.07

Table 7: Test results of unlabeled approaches.
AnnoCTR (%) TRAM2 (%)

Model Dom. F1 Prec. Rec. F1 Prec. Rec.

ATTACK-BERT [1] CTI 35.45 35.72 40.73 50.60 43.07 67.95
SentSecBERT [49] CTI 31.74 30.53 47.25 36.71 35.71 52.20
NV-Embed-V2 [51] Gen. 29.51 24.17 62.45 45.69 41.59 64.94
SBERT (MPNet) [81] Gen. 34.58 33.64 46.49 44.58 41.00 55.59

AnnoCTR (All TTPs) TRAM2 (All TTPs)

Model Domain F1 Prec. Rec. F1 Prec. Rec.

ATTACK-BERT [1] CTI 13.44 8.93 41.46 10.71 7.24 67.95
SentSecBERT [49] CTI 10.45 6.18 47.49 10.32 7.26 52.20
NV-Embed-V2 [51] Gen. 9.50 5.85 63.19 11.37 7.85 64.94
SBERT (MPNet) [81] Gen. 12.85 8.23 48.00 12.23 8.31 55.59

Unlabeled text classification. We adapt unlabeled text classi-
fiers following an approach inspired by Alam et al. [5]. Using
sentence embedding models (Appendix D), we create embed-
dings for ATT&CK TTP titles and descriptions, concatenat-
ing them into a single string. We then calculate the similarity
between these embeddings and those of input sentences using
the same model. Similarity values above a threshold lead to
the class assignment, with the optimal threshold selected by
minimizing the average F1-score on the validation set.

5.2 Evaluation

Comparison of labeled and unlabeled approaches. In this
experiment, we compare the performances of labeled and un-
labeled approaches on our two experimental datasets (see Sec-
tion 3.2). As shown in Tables 6 and 7, labeled approaches out-
perform unlabeled ones, with RoBERTa achieving the high-
est F1-Score of 70.55% on TRAM2 and CySecBERT scor-
ing 62.75% on AnnoCTR. In contrast, unlabeled approaches
reach F1-Scores of 50.60% and 35.45%. Both labeled and un-
labeled approaches achieve Recall values above 60%, but un-
labeled models score generally lower Precision values, likely

Table 8: Test results of data augmentation.
TRAM2

Augmentation F1 (%) Prec. (%) Rec. (%)

Synthetic Data 65.42 (-5.13) 71.96 (-5.63) 63.12 (-5.27)
OOD Data 71.41 (+0.86) 72.76 (-4.83) 74.53 (+6.14)

indicating that the models are providing few correct labels
with their answers. Interestingly, the difference in highest F1-
Score values between the two datasets is smaller for labeled
approaches (7.8%) than for unlabeled ones (15.15%). Con-
sider that AnnoCTR has 68 additional labels than TRAM2,
and a significantly lower number of samples, hinting that
labeled approaches are less impacted by the increase of la-
bels. Hyper-parameter tuning has a relatively small impact
on RoBERTaLarge’s performance since we were able to push
its F1-Score by 0.11% (see Appendix C for more details).
As shown in Table 7, unlabeled approaches can also output
any possible (sub-)technique similar to the input sentence,
but all the models undergo a significant drop in all evaluation
metrics, and appear to be practically unusable due to their
low Precision (see Table 7). Lastly, both Tables also show
that models pre-trained on CTI do not show a consistent im-
provement on generic models, and even on models that have
been pre-trained on scientific language, such as SciBERT [11].
The highest performances on TRAM2 are achieved by a gen-
eral language model, while on AnnoCTR by a CTI-specific
model, CySecBERT. For the unlabeled approaches, instead,
ATTACK-BERT outperforms other models on both datasets,
with a larger margin on AnnoCTR, around 5%.

Data augmentation. Recall that data augmentation is a com-
ponent exclusive to labeled approaches. In this experiment,
we fine-tune the RoBERTaLarge model, which achieves the
highest test score on the TRAM2 dataset (see Table 6), on
two augmented versions of the original TRAM2 dataset—the
augmentation process is described in Section 5.1. The results
in Table 8 suggest that both data augmentation approaches
decrease the Precision of our reference model. However, the
augmentation based on the inclusion of Out-of-Distribution
data [100] can provide slightly beneficial results, with an
F1-Score increase of 0.86% on the non-augmented model.

6 Empirical Analysis: Generation

This section presents the implementation and evaluation of the
automatic TTP extraction methods reviewed in Section 2.4.

6.1 Methods and Adaptation
The selection of generative LLMs is immense and almost
daily new SotA models are released in different parameter
sizes or fine-tuned derivatives that lead to new high scores

on leaderboards such as Open LLM Leaderboard V2 11 or
Chatbot Arena [16]. However, for the sake of our systema-
tisation of knowledge, we focus on the Llama3.1-Instruct8B
model [63].12 It is popularly used in research, is open source
and has feasible dimensions allowing for reasonable repro-
ducibility. We use the transformers library from hugging-
face 13 with unsloth [34] as the fine-tuning library. Low-Rank
Adaptation (LoRA) is used as the training method on all tar-
get modules [36]. Fine-tuning is always performed with a
constant learning rate of 1e−5 for the embedding layer and
2e−5 for all other layers, with a batch size of 4 for 3 epochs.
The embedding model used for our generative LLM RAG ex-
periments is Qwen2-Instruct7B [57], which ranked first for En-
glish texts in the Massive Text Embedding Benchmark [69] in
July 2024. Quantization is omitted and all models are trained
and evaluated on 16-bit weights. All tests are repeated 3 times
on different seeds on a single NVIDIA L40.

Response Interpretation. Generative LLMs classify by gen-
erating text, which must be interpreted to extract classes. We
explore two approaches: matching MITRE concepts by their
names and matching them by their IDs. Both methods yield
similar results in our experiments. For the sake of clarity, we
therefore only show the ID extraction approach in all follow-
ing experiments. Table 14 in Appendix B shows the minimal
differences of both approaches.

6.2 Evaluation

Overall, all methods can be divided into two categories:
prompt-based and weight-based. Prompt-based methods
change the prompt to give the LLM more information dur-
ing inference time, such as Few-Shot Prompting (FSP) and
Retrieval Augmented Generation (RAG). Weight-based meth-
ods instead change the weights during the training phase, i.e.
mainly Supervised Fine-tuning (SFT). All results are summa-
rized in Table 9, where Raw indicates a static prompt, using
suggested prompt-engineering techniques [83], with no addi-
tional methods.

Prompt-based. FSP and RAG are methods that are both real-
ized directly on the prompt. One behavior we have observed
is the instability of the prompt. The language model can be
unstable and produce irrelevant results when given slightly
modified prompts, leading to hallucinations and decreased
accuracy in extracting relevant information. Prompts can be
overly unstructured, unclear, or simply inappropriate for the
model causing F1-scores of < 0.10 on both tested datasets.
Meanwhile our Raw prompt achieves an F1-score of 0.30
on the AnnoCTR test dataset and 0.49 on the TRAM2 test

11https://huggingface.co/spaces/open-llm-leaderboard/ope
n_llm_leaderboard

12Our study shows similar results for larger models with the same prompt,
such as GPT-4o resp. the comparable (https://huggingface.co/meta-l
lama/Llama-3.3-70B-Instruct) Llama3.3-70B-Instruct (Appendix B).

13https://huggingface.co/docs/transformers/index

Table 9: Comparison results of Generative LLM methods.
Category Method AnnoCTR (%) TRAM2 (%)

Prompt-Based
F1 Prec. Rec. F1 Prec. Rec.

Raw 30.3 24.4 50.8 49.2 39.6 65.1
FSP 26.4 34.1 24.5 46.2 47.5 44.9
RAG 35.9 32.7 53.1 54.1 45.5 66.8
RAG + FSP 34.6 33.3 39.3 53.2 48.5 65.5

Weight-Based SFT Raw 55.3 50.8 60.7 72.5 66.3 80.0

Weight + Prompt SFT FSP 42.8 53.3 39.8 57.9 51.3 69.5
SFT RAG 47.6 48.7 54.9 65.5 57.6 76.0
SFT RAG + FSP 47.3 49.2 54.0 64.6 56.0 76.4

dataset. This instability of prompts is also observed in the
work of Fieblinger et al. [26] during TTP extraction.

Few-Shot Prompting. We also observed similar behavior with
FSP. We intentionally did not adapt the examples to the test
data records, as this is not an option in a real-world scenario.
For this reason, we randomly selected 5 example sentences
with the correct labels and added them to the prompt. Without
precise adjustments to the existing test dataset, such as using
labels that appear more often, the result is worse than without
FSP. This behavior of FSP is a known phenomenon explained
in many papers how badly chosen examples can cause a bias
and degrade performance [15, 26, 49, 107].

Retrieval Augmented Generation. RAG has the advantage that
it uses a semantic similarity check to add only (supposedly)
helpful information to the prompt. We compared the seman-
tic embeddings from the sentence under investigation with
embeddings that we generated from all ATT&CK concept
descriptions and names in order to present possible ATT&CK
concept candidates in the prompt. We achieve the best results
by adding five RAG entries to the prompt. In Table 9 we see
that mainly the precision of the model improves, as it can
probably make more confident decisions with the additional
RAG information names, IDs and corresponding descriptions.

Weight-based. The advantage of SFT is that it is more inde-
pendent of the prompt, as the model is taught what is to be
derived from the prompt during training.

Supervised Fine-tuning. For training, we created LLM in-
struction data sets from the TRAM2 and AnnoCTR training
dataset. As user input we used our normal TTP extraction
prompt without any other methods. The output of the LLM
consists of the corresponding label wrapped in 24 different
templates created from the original responses of the untrained
model. This has the advantage that the LLM does not have to
change its general behavior, but is only trained on the correct
tokens in the form of the correct IDs and names. The creation
of the data set is not entirely trivial and can also lead to nega-
tive results. We were able to observe this negative behavior
when the response of the LLM in the training dataset is sim-
ply a pure list of IDs. We also applied an idea from Zhang
et al. [104] by creating the same training instruction dataset,
with RAG entries, so that the model can learn to deal better

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/docs/transformers/index

Table 10: Test results of data augmentation for LLMs in com-
parison with original TRAM2 training set in parenthesis.

TRAM2

Method F1 (%) Prec. (%) Rec. (%)

Raw 71.8 (-0.7) 70.7 (-9.3) 72.9 (+6.6)
RAG 68.0 (+2.5) 78.0 (+2.0) 60.3 (-6.0)
FSP+RAG 69.9 (+5,3) 81.0 (+4,6) 61.5 (+5,5)

Table 11: Document-level granularity for LLM strategies in
comparison with sentence-level granularity in parenthesis.

AnnoCTR

Method F1 (%) Prec. (%) Rec. (%)

Raw 26.7 (-3.6) 31.4 (+7.0) 26.2 (-24.6)
FSP 26.0 (-0.4) 27.3 (-6.8) 24.8 (+0.3)
RAG 27.4 (-8.4) 36.0 (+3.3) 25.8 (-27.3)

TRAM2

Raw 34.2 (-15.0) 51.1 (+11.5) 32.8 (-32.3)
FSP 31.0 (-15.2) 41.9 (-5.6) 30.9 (-14.0)
RAG 30.9 (-23.2) 45.8 (+0.3) 29.6 (-37.2)

with external context during training. With RAG applied, the
results are not better than the fine-tuning without RAG en-
tries. They are, however, more balanced in terms of recall and
precision; detailed results are in Appendix B, Table 15.

Augmented Data. For the generative LLMs, we took the data
set described in Section 5.1 and used it to create an LLM
instruction data set with eight variations for each sentence.
The distribution of the labels remains the same as in the
original TRAM2 dataset. Although we trained with 8 times
the amount of data, the results are close to the training on
the original TRAM2 dataset, see Table 10. This demonstrates
that data quality is crucial and does not rely on the quantity
of semantically similar sentences.

Document-Level. Generative LLMs can also analyze entire
CTI reports at once and provide estimates of the TTPs con-
tained in one shot. The advantage is a faster analysis of the
CTI reports and therefore fewer resources. As can be seen
from Table 11, the precision increases slightly, while the recall
for Raw and RAG drops by half in some cases across both data
sets tested. RAG is more difficult at document-level because a
similarity check over the entire content at once cannot achieve
a short distance to all containing ATT&CK concepts. Even
when splitting text into 500 characters-long passages, and
adding multiple RAG for every text passage, this approach
does not achieve results as good as sentence-level approaches.

7 Empirical Analysis: Overall Comparison

In this experiment, we compare the three approaches in a
closed-set scenario, in which information on the data is known
in advance, and an open-set scenario, where no prior informa-

Table 12: Best performances on closed-set classifications of
all three approaches on TRAM2 test dataset.

TRAM2

Approach F1 (%) Prec. (%) Rec. (%)

NER 62.19 57.51 67.69
Classification 71.41 72.76 74.53
Generation 72.50 80.00 66.30

tion about the data set is available and no specific adjustments
to the approaches is possible.
Closed-set Scenario. This scenario is the most common in
literature, as it allows the evaluation of methods that maxi-
mize the performance of the models: boundary conditions
are already known in advance and can be used to gain advan-
tage. For this test, we refer to the TRAM2 dataset, as it is the
most widely used benchmark dataset. The results in Table 12
demonstrate that both Classification and Generation models
outperform traditional NER approaches across all metrics,
with Generation achieving the highest F1-Score of 72.50%,
surpassing Classification by a margin of +1.09%.
Open-set Scenario. With the open-set scenario, we replicate
a real-world setting in which the lack of data affects the capa-
bility to maximize the performances of our models. For this
test, we adopt the AnnoCTR dataset, with label subsets of in-
creasing frequency, namely the top-{10,25,50}, all AnnoCTR
labels (118), and the entire ATT&CK Enterprise matrix (637).
By having all the possible labels, we attempt to gain insights
on a real-world, unconstrained scenario, assuming that every
(sub-)technique can be referenced from the CTI report. Since
NER is not a data-driven approach, the normal pipeline can
be used here. For Classification, we refer to the unlabeled ap-
proach, which does not require training, with a classification
threshold set to the reference value of 0.5. For Generation, we
use a non-fine-tuned generative LLM with RAG entries taken
from all the TTP descriptions. Figure 4 highlights that both
Generation and Classification are inferior on every subset of
labels, conversely to the closed-set scenario.

8 Limitations

Our analysis of methods for TTP extraction is subject to some
limitations. First, no publicly available datasets fully satisfy
the criteria outlined in Section 3.2, with the exception of
TRAM2 [82], which we employ in this work. While TRAM2
encompasses the 50 most frequently observed techniques,
its annotations remain constrained in scope. To address this
limitation, we leverage AnnoCTR [50] (which covers 133
techniques), though its labels may still exhibit some degree
of noise. Second, our study does not identify a definitive
best-performing approach among the state-of-the-art methods
explored. We focus on capturing the fundamental charac-
teristics of such approaches, thereby providing actionable

10 25 50 118
0

20

40

60

80

Number of Techniques

Pe
rf

or
m

an
ce

(%
)

NER
Classification

Generation
Precision

Recall
F1-Score

130 637

||

Figure 4: Comparison of performance on the top-k most com-
mon ATT&CK techniques for the AnnoCTR dataset in a
(favorable) open-set-scenario.

insights into the strengths and weaknesses of different NLP
approaches and methods. Consequently, our implementations
may not incorporate certain approach-specific optimizations
(see Appendix A). Additionally, certain studies [5, 37, 49]
evaluate combinations of multiple approaches, whereas our
analysis focuses on individual methods. We believe that study-
ing pipelined approaches is of interest for future research.
Lastly, our research work focuses on the most recent public
generative models. Given the rapid developments in genera-
tive AI, future architectures might yield better performance
than those observed in this study.

9 Conclusion and Takeaways

Our results reveal that even the most recent NLP models,
such as generative LLMs, are unable to surpass the F1-Score
bar set at 70% by less recent models (e.g., BERT-based text
classifiers), by more than a small degree. This phenomenon is
consistent across both experimental data sets. Even though our
experiments show that specific components aimed at solving
challenges related to the application of NLP on cybersecurity
language can provide additional support, the improvement is
relatively small. We derive the following takeaways:

⋄ Lack of datasets. Data-driven TTP extraction approaches
overall achieve higher performances, but are fundamentally
limited by the lack of manually annotated datasets. Many
research works highlight this as the primary obstacle for
building TTP extraction approaches. To mitigate this issue,
some techniques, such as data augmentation, have been pro-
posed to supplement limited datasets with synthetic samples,
procedure descriptions extracted from knowledge bases like
ATT&CK, or large-scale unsupervised pre-training of LLMs
on cybersecurity texts. However, our results demonstrate that
these methods are insufficient to compensate for the lack
of high-quality, manually annotated data. Existing datasets
show common limitations, such as the inclusion of a sub-

set of TTPs (e.g., TRAM2 only covers 50 techniques), and
strong imbalance among the included labels. In addition, the
building process of some of the proposed datasets lacks suf-
ficient clarity. Overall, dataset-related issues also affect the
benchmarking process of NLP techniques, making it harder
to understand their strengths and weaknesses. The research
and industry communities should focus on providing higher
quality datasets, including annotations for entire original doc-
uments, enabling the evaluation of the downstream task.
⋄ Label confusion. An in-depth analysis of our results reveals
that treating TTP extraction as a single-sentence classification
problem may be inherently limited. The outputs from our
best-performing Text Classification model, RoBERTaLarge,
show that certain labels are often confused or appear together
incorrectly in the answers of the model. For instance, tech-
niques like T1112 and T1547.001, or T1140 and T1027, are
frequently misclassified (see Appendix F for more informa-
tion). Sometimes, this confusion is due to subtle differences
in meaning, such as the distinction between file obfuscation
(T1207) and deobfuscation (T1140). Most likely, the embed-
dings of sentences describing this behavior are close enough
to confuse the classifier, and more advanced NLP techniques
should be able to circumvent such issues. In other cases, we
can instead derive that their differences are likely too sub-
tle to be captured by analyzing single sentences, even for
a human expert. For example, both T1547.001 and T1112
involve modifying the Windows Key Registry, but the con-
text and intentions behind these actions differ significantly.
T1547.001 is related to achieving persistence for autostart,
while T1112 is associated with hiding information or aiding
in persistence. For example, in TRAM2, T1112 is associated
with the sentence “If it is not installed, it installs itself to %pro-
gramdata% and then sets the registry run key for persistence.”,
while T1547.001 to “It sets up a run key for via the command
C:\ProgramData\GoogleUpdate\googleupdate.exe work for
persistence.”. Previous context information and reasoning
over the attacker’s motives are key to distinguishing these two
scenarios. In AnnoCTR [50], an agreement test shows that
two different annotators only have a 31% agreement on the
ATT&CK concepts. All these observations lead us to sus-
pect that the ATT&CK framework is not always sufficiently
unambiguous. This suspicion should be investigated further
to see to what extent it also represents a potential source of
error. We also derive the following: first, future automated
extraction tools need to incorporate additional context beyond
single sentences to accurately capture the intended goals of
threat actions; second, while existing machine-supported an-
notation tools [1, 49] represent a step in the right direction,
future works should focus on providing expert annotators
with more context to ensure a correct labeling process.
⋄ Approach Summary. In this work, we have subdivided and
analyzed existing works into three main categories, rule-based
NER systems, data-driven Classification, and Generation sys-
tems, discussing their respective benefits and drawbacks. Due

to their rule-based nature, NER systems provide explainable
outputs but require careful adaptations to account for the pe-
culiarities of cybersecurity language. Such systems also show
reliable results with limited knowledge about data. When
labeled data is available, classification models provide im-
provements over NER systems (see Section 7), and their per-
formances are seemingly on par with generative models. We
also observed that data augmentation can provide marginal
benefits, while the adoption of embedding models pre-trained
on CTI-domain corpora does so less consistently (see Ta-
bles 6, 7). As the popularity of BERT-based models has been
obscured by more recent decoder-only transformers [94], fu-
ture research should still investigate such methods due to their
performance-size tradeoff. Supervised fine-tuned generative
LLMs achieve comparable results to classification models.
However, the creation of the datasets, the prompts, the re-
sponse interpretation, the provision of the required computing
power, and the evaluation of all methods is more difficult
than with many BERT-like models of classification. If there
is not enough qualitatively labeled data or sufficient machine
learning expertise available, an untrained generative LLM can
be used in some settings as an alternative to classification
models, as can be seen in Figure 4. Nevertheless, it must be
noted that generative LLMs are not the best tool for every
task.

⋄ Recommendations. Practitioners seeking to include a TTP
extraction process in their CTI pipeline must audit their anno-
tated data availability, identify which subset of ATT&CK’s
patterns are of interest, and guide the model development
accordingly. Generative LLMs are tempting: they may solve
this task under conditions where training data is completely
absent and allow for the development of approximate sys-
tems simply with a natural language description of the task.
However, results obtained with this approach are often error-
prone. More consistent results can be obtained with traditional
NLP methods (although complex to maintain and develop),
or with smaller and less resource-hungry models (e.g., BERT)
if enough training data is provided. Modern threat hunting,
and consequently, strategic decisions are guided by the anal-
ysis of TTPs [18]. Systems with low precision (e.g., noisy
malware behavior detection via SIGMA rules) risk mislead-
ing analysts with false positives, while low recall systems
omit critical adversary capabilities, creating incomplete threat
profiles. High-recall NER systems aid in extracting relevant
entities from incident reports in real-world, alarm-overloaded
environments but require analyst filtering due to low precision,
making them better suited as data-labeling recommendation
tools. Conversely, Classification approaches – trained on high
quality datasets – already strike a good balance for closed
TTP sets. Generative approaches offer triage assistance but
introduce hallucination risks. Recent “Large Reasoning Mod-
els” seem to be subject to this issue as well [93]. Both options
– maintaining traditional NLP pipelines or monitoring LLM
outputs – carry costs that depend on the team’s capacity. NLP

methodologies and their optimizations must be carefully eval-
uated on real-world CTI data to prevent overfitting.

⋄ Are We There Yet? Our results suggest that TTP extraction
cannot yet realistically cover the entire ATT&CK framework.
Even with prior knowledge of the test dataset, the results of
all experiments are far from being fully reliable automatic
annotation systems for practical use. While there are technical
advances in the individual approaches, our reasonable suspi-
cion is that work on automatic TTP extraction is being held
back not by a lack of innovation in NLP-based applications,
but by a lack of high quality datasets. Existing datasets are
small, offer only a subset of existing labels, suffer from class
imbalance, and may contain ambiguous annotations. Besides,
the research community focuses almost exclusively on ML-
based approaches in unrealistic closed-set scenarios, without
experiments in more realistic open-set scenarios.

Ethics Considerations

This research systematizes the knowledge on the automated
extraction of TTPs. By providing a comprehensive analy-
sis of relevant methodologies, it aims to advance defensive
cybersecurity and threat analysis, rather than offensive appli-
cations. Specifically, automating repetitive, manual-intensive
extraction tasks enhances the work of cybersecurity profes-
sionals. The study follows ethical, replicable, and fair re-
search practices, using public datasets, established frame-
works (e.g., MITRE ATT&CK), rigorous validation, and re-
sponsible model sharing. We acknowledge stakeholders–
cybersecurity professionals relying on accurate TTP extrac-
tion, organizations needing timely threat insights, researchers,
and the public benefiting from stronger defenses–as well as
risks, including tool misuse, model hallucinations, biases,
and data sensitivity. Misuse is mitigated through responsible
open-source sharing, a defined defensive scope, and security
guidelines. Bias and hallucination risks are reduced through
validation against the MITRE ATT&CK framework, care-
fully crafted prompts, and diverse training data. Sensitive data
risks are addressed by using public sources and adhering to
established security and privacy protocols.

Open Science

We are committed to the open science policy and made all
our source code, models and datasets publicly available at
https://doi.org/10.5281/zenodo.15608555.

Acknowledgments

We would like to thank our reviewers for their valuable in-
puts. Tommaso Paladini acknowledges support from TIM

https://doi.org/10.5281/zenodo.15608555

S.p.A. through the Ph.D. scholarship. This work is also sup-
ported by the SeReNity project, Grant No. cs.010, funded by
Netherlands Organisation for Scientific Research (NWO).

References
[1] Basel Abdeen, Ehab Al-Shaer, Anoop Singhal, Latifur Khan, and

Kevin W. Hamlen. SMET: semantic mapping of CVE to att&ck and
its application to cybersecurity. In Data and Applications Security and
Privacy XXXVII - 37th Annual IFIP WG 11.3 Conference, DBSec,
Lecture Notes in Computer Science. Springer, 2023.

[2] Ehsan Aghaei, Xi Niu, Waseem G. Shadid, and Ehab Al-Shaer. Secure-
bert: A domain-specific language model for cybersecurity. In Security
and Privacy in Communication Networks - 18th EAI International
Conference, SecureComm, Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineer-
ing. Springer, 2022.

[3] Kashan Ahmed, Syed Khaldoon Khurshid, and Sadaf Hina. Cyberen-
trel: Joint extraction of cyber entities and relations using deep learning.
In Computers & Security, 2024.

[4] Bader Al-Sada, Alireza Sadighian, and Gabriele Oligeri. MITRE
att&ck: State of the art and way forward. In ACM Computing Surveys,
2025.

[5] Md Tanvirul Alam, Dipkamal Bhusal, Youngja Park, and Nidhi Ras-
togi. Looking beyond iocs: Automatically extracting attack pat-
terns from external CTI. In Proceedings of the 26th International
Symposium on Research in Attacks, Intrusions and Defenses, RAID.
ACM, 2023.

[6] Paulo M. M. R. Alves, Geraldo P. R. Filho, and Vinícius P. Gonçalves.
Leveraging bert’s power to classify ttp from unstructured text. In
2022 Workshop on Communication Networks and Power Systems
(WCNPS), 2022.

[7] Gbadebo Ayoade, Swarup Chandra, Latifur Khan, Kevin W. Hamlen,
and Bhavani Thuraisingham. Automated threat report classification
over multi-source data. In 4th IEEE International Conference on
Collaboration and Internet Computing, CIC. IEEE Computer Society,
2018.

[8] Vimala Balakrishnan and Ethel Lloyd-Yemoh. Stemming and lemma-
tization: A comparison of retrieval performances. Lecture Notes on
Software Engineering, IACSIT Press, 2014.

[9] Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten Zesch. UKP:
computing semantic textual similarity by combining multiple con-
tent similarity measures. In Proceedings of the 6th International
Workshop on Semantic Evaluation, SemEval@NAACL-HLT. The
Association for Computer Linguistics, 2012.

[10] Markus Bayer, Philipp Kuehn, Ramin Shanehsaz, and Christian Reuter.
Cysecbert: A domain-adapted language model for the cybersecurity
domain. In ACM Transactions on Privacy and Security, 2024.

[11] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained
language model for scientific text. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP. Association for Computational Lin-
guistics, 2019.

[12] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov.
Enriching word vectors with subword information. In Trans. Assoc.
Comput. Linguistics, 2017.

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020,
NeurIPS, 2020.

[14] Minghao Chen, Kaijie Zhu, Bin Lu, Ding Li, Qingjun Yuan, and Yuefei
Zhu. AECR: automatic attack technique intelligence extraction based
on fine-tuned large language model. ACM Computers & Security,
2025.

[15] Yutong Cheng, Osama Bajaber, Saimon Amanuel Tsegai, Dawn Song,
and Peng Gao. CTINEXUS: leveraging optimized LLM in-context
learning for constructing cybersecurity knowledge graphs under data
scarcity. CoRR, abs/2410.21060, 2024.

[16] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas
Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang,
Michael I. Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot
arena: An open platform for evaluating llms by human preference.
In Forty-first International Conference on Machine Learning, ICML,
2024.

[17] Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan
Cao, Zihao Wu, Lin Zhao, Shaochen Xu, Fang Zeng, Wei Liu, Ninghao
Liu, Sheng Li, Dajiang Zhu, Hongmin Cai, Lichao Sun, Quanzheng
Li, Dinggang Shen, Tianming Liu, and Xiang Li. Auggpt: Leveraging
chatgpt for text data augmentation. In IEEE Transactions on Big Data.
IEEE, 2025.

[18] Roman Daszczyszak, Dan Ellis, Steve Luke, and Sean Whitley. Ttp-
based hunting. MITRE Corp, McLean VA, Tech. Rep, 2019.

[19] Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Ka-
tri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D. Man-
ning. Universal stanford dependencies: A cross-linguistic typology.
In Proceedings of the Ninth International Conference on Language
Resources and Evaluation, LREC. European Language Resources As-
sociation (ELRA), 2014.

[20] Defense Advanced Research Projects Agency (DARPA). Darpa trans-
parent computing program, 2014. https://www.darpa.mil/prog
ram/transparentcomputing.

[21] Isuf Deliu, Carl Leichter, and Katrin Franke. Collecting cyber threat
intelligence from hacker forums via a two-stage, hybrid process using
support vector machines and latent dirichlet allocation. In IEEE
International Conference on Big Data (BigData). IEEE, 2018.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805, 2018.

[23] Nuno Dionísio, Fernando Alves, Pedro Miguel Ferreira, and Alysson
Bessani. Cyberthreat detection from twitter using deep neural
networks. In International Joint Conference on Neural Networks,
IJCNN. IEEE, 2019.

[24] Reza Fayyazi, Rozhina Taghdimi, and Shanchieh Jay Yang. Advanc-
ing TTP analysis: Harnessing the power of large language models
with retrieval augmented generation. In Annual Computer Security
Applications Conference, ACSAC. IEEE, 2024.

[25] Christiane Fellbaum. WordNet: An electronic lexical database. MIT
press, 1998.

[26] Romy Fieblinger, Md Tanvirul Alam, and Nidhi Rastogi. Actionable
cyber threat intelligence using knowledge graphs and large language
models. In IEEE European Symposium on Security and Privacy
Workshops, EuroS&PW. IEEE, 2024.

[27] Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang,
Zhengjie Ji, Zilin Zhang, and Dawn Song. Threatkg: A threat knowl-
edge graph for automated open-source cyber threat intelligence gath-
ering and management. CoRR, abs/2212.10388, 2022.

https://www.darpa.mil/program/transparentcomputing
https://www.darpa.mil/program/transparentcomputing

[28] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin,
Fengyuan Xu, Prateek Mittal, Sanjeev R Kulkarni, and Dawn Song.
Enabling efficient cyber threat hunting with cyber threat intelligence.
In 37th IEEE International Conference on Data Engineering, ICDE.
IEEE, 2021.

[29] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi
Bi, Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang, and Haofen Wang.
Retrieval-augmented generation for large language models: A survey.
CoRR, abs/2312.10997, 2023.

[30] Wenhan Ge and Junfeng Wang. Seqmask: Behavior extraction over
cyber threat intelligence via multi-instance learning. In The Computer
Journal, 2024.

[31] Wenhan Ge, Junfeng Wang, Tongcan Lin, Binhui Tang, and Xiaohui
Li. Explainable cyber threat behavior identification based on self-
adversarial topic generation. Computer & Security, 2023.

[32] Yumna Ghazi, Zahid Anwar, Rafia Mumtaz, Shahzad Saleem, and
Ali Tahir. A supervised machine learning based approach for au-
tomatically extracting high-level threat intelligence from unstruc-
tured sources. In 2018 International Conference on Frontiers of
Information Technology, FIT. IEEE Computer Society, 2018.

[33] Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic
roles. In Computer Linguistics, 2002.

[34] Daniel Han, Michael Han, and Unsloth Team. Unsloth, 2023.

[35] Zhiqiang Hao, Chuanyi Li, Xiao Fu, Bin Luo, and Xiaojiang Du.
Leveraging hierarchies: HMCAT for efficiently mapping CTI to at-
tack techniques. In Computer Security - ESORICS 2024 - 29th
European Symposium on Research in Computer Security, Lecture
Notes in Computer Science. Springer, 2024.

[36] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-
rank adaptation of large language models. In The Tenth International
Conference on Learning Representations, ICLR, 2022.

[37] Yi-Ting Huang, R. Vaitheeshwari, Meng Chang Chen, Ying-Dar Lin,
Ren-Hung Hwang, Po-Ching Lin, Yuan-Cheng Lai, Eric Hsiao-Kuang
Wu, Chung-Hsuan Chen, Zi-Jie Liao, and Chung-Kuan Chen. Mitre-
trieval: Retrieving MITRE techniques from unstructured threat reports
by fusion of deep learning and ontology. In IEEE Transactions on
Network and Service Management, 2024.

[38] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and
Xi Niu. Ttpdrill: Automatic and accurate extraction of threat actions
from unstructured text of CTI sources. In Proceedings of the 33rd
Annual Computer Security Applications Conference. ACM, 2017.

[39] Ghaith Husari, Xi Niu, Bill Chu, and Ehab Al-Shaer. Using entropy
and mutual information to extract threat actions from cyber threat
intelligence. In 2018 IEEE International Conference on Intelligence
and Security Informatics, ISI. IEEE, 2018.

[40] Hangyuan Ji, Jian Yang, Linzheng Chai, Chaoren Wei, Liqun
Yang, Yunlong Duan, Yunli Wang, Tianzhen Sun, Hongcheng Guo,
Tongliang Li, Changyu Ren, and Zhoujun Li. Sevenllm: Benchmark-
ing, eliciting, and enhancing abilities of large language models in
cyber threat intelligence. CoRR, abs/2405.03446, 2024.

[41] Youngjin Jin, Eugene Jang, Jian Cui, Jin-Woo Chung, Yongjae Lee,
and Seungwon Shin. Darkbert: A language model for the dark side
of the internet. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
ACL. Association for Computational Linguistics, 2023.

[42] Karen Spärck Jones. A statistical interpretation of term specificity
and its application in retrieval. J. Documentation, 2004.

[43] Masashi Kadoguchi, Shota Hayashi, Masaki Hashimoto, and Akira
Otsuka. Exploring the dark web for cyber threat intelligence using ma-
chine leaning. In 2019 IEEE International Conference on Intelligence
and Security Informatics, ISI. IEEE, 2019.

[44] Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim,
and Bing Liu. Continual pre-training of language models. In
The Eleventh International Conference on Learning Representations,
ICLR, 2023.

[45] Heejung Kim and Hwankuk Kim. Comparative experiment on ttp clas-
sification with class imbalance using oversampling from cti dataset.
Security and Communication Networks, 2022.

[46] Barbara A. Kitchenham and Pearl Brereton. A systematic re-
view of systematic review process research in software engineering.
Information and Software Technology, 2013.

[47] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. Large language models are zero-shot rea-
soners. In Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022,
NeurIPS, 2022.

[48] Sandra Kübler, Ryan T. McDonald, and Joakim Nivre. Dependency
Parsing. Synthesis Lectures on Human Language Technologies. Mor-
gan & Claypool Publishers, 2009.

[49] Udesh Kumarasinghe, Ahmed Lekssays, Husrev Taha Sencar, Sabri
Boughorbel, Charitha Elvitigala, and Preslav Nakov. Semantic ranking
for automated adversarial technique annotation in security text. In
Proceedings of the 19th ACM Asia Conference on Computer and
Communications Security, ASIA CCS. ACM, 2024.

[50] Lukas Lange, Marc Müller, Ghazaleh Haratinezhad Torbati, Dragan
Milchevski, Patrick Grau, Subhash Chandra Pujari, and Annemarie
Friedrich. Annoctr: A dataset for detecting and linking entities, tac-
tics, and techniques in cyber threat reports. In Proceedings of the
2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation, LREC/COLING 2024. ELRA
and ICCL, 2024.

[51] Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Moham-
mad Shoeybi, Bryan Catanzaro, and Wei Ping. Nv-embed: Improved
techniques for training llms as generalist embedding models. CoRR,
abs/2405.17428, 2024.

[52] Valentine Legoy, Marco Caselli, Christin Seifert, and Andreas Peter.
Automated retrieval of att&ck tactics and techniques for cyber threat
reports. CoRR, abs/2004.14322, 2020.

[53] Bohan Li, Yutai Hou, and Wanxiang Che. Data augmentation ap-
proaches in natural language processing: A survey. AI Open, 2022.

[54] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on
deep learning for named entity recognition. In IEEE Transactions on
Knowledge and Data Engineering, 2022.

[55] Jingwen Li, Ru Zhang, and Jianyi Liu. Attack behavior extraction
based on heterogeneous threat intelligence graphs and data augmenta-
tion. In International Joint Conference on Neural Networks, IJCNN.
IEEE, 2024.

[56] Lingzi Li, Cheng Huang, and Junren Chen. Automated discovery and
mapping att&ck tactics and techniques for unstructured cyber threat
intelligence. In Computer & Security, 2024.

[57] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie,
and Meishan Zhang. Towards general text embeddings with multi-
stage contrastive learning. CoRR, abs/2308.03281, 2023.

[58] Zhenyuan Li, Jun Zeng, Yan Chen, and Zhenkai Liang. Attackg: Con-
structing technique knowledge graph from cyber threat intelligence
reports. In Computer Security - ESORICS 2022 - 27th European
Symposium on Research in Computer Security, Lecture Notes in
Computer Science. Springer, 2022.

[59] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and
Raheem A. Beyah. Acing the IOC game: Toward automatic dis-
covery and analysis of open-source cyber threat intelligence. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016.

[60] Matteo Liberato. Secbert: Analyzing reports using bert-like models.
Master’s thesis, University of Twente, 2022.

[61] Chenjing Liu, Junfeng Wang, and Xiangru Chen. Threat intelligence
att&ck extraction based on the attention transformer hierarchical re-
current neural network. In ACM Applied Soft Computing, 2022.

[62] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized BERT pretraining approach.
CoRR, abs/1907.11692, 2019.

[63] Inc. Llama Team, AI @ Meta Platforms. The llama 3 herd of models.
CoRR, abs/2407.21783, 2024.

[64] Christopher D. Manning. Part-of-speech tagging from 97% to 100%:
Is it time for some linguistics? In Computational Linguistics and
Intelligent Text Processing - 12th International Conference, CICLing,
Lecture Notes in Computer Science. Springer, 2011.

[65] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In 1st International
Conference on Learning Representations, ICLR, 2013.

[66] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and V. N.
Venkatakrishnan. POIROT: aligning attack behavior with kernel audit
records for cyber threat hunting. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security,
CCS. ACM, 2019.

[67] Mariella Mischinger, Sergio Pastrana, and Guillermo Suarez-Tangil.
Ioc stalker: Early detection of indicators of compromise. In Annual
Computer Security Applications Conference, ACSAC. IEEE, 2024.

[68] LLC MITRE Engenuity. Threat report att&ck mapper (tram). https:
//github.com/center-for-threat-informed-defense/tram,
2023.

[69] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers.
MTEB: massive text embedding benchmark. In Proceedings of
the 17th Conference of the European Chapter of the Association for
Computational Linguistics, EACL. Association for Computational
Linguistics, 2023.

[70] S Naveen, Rami Puzis, and Kumaresan Angappan. Deep learn-
ing for threat actor attribution from threat reports. In 2020 4th
international conference on computer, communication and signal
processing (ICCCSP). IEEE, 2020.

[71] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Gold-
berg, Jan Hajic, Christopher D. Manning, Ryan T. McDonald, Slav
Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Ze-
man. Universal dependencies v1: A multilingual treebank collection.
In Proceedings of the Tenth International Conference on Language
Resources and Evaluation LREC. European Language Resources As-
sociation (ELRA), 2016.

[72] Vittorio Orbinato, Mariarosaria Barbaraci, Roberto Natella, and
Domenico Cotroneo. Automatic mapping of unstructured cyber
threat intelligence: An experimental study: (practical experience re-
port). In IEEE 33rd International Symposium on Software Reliability
Engineering, ISSRE, 2022.

[73] Tommaso Paladini, Lara Ferro, Mario Polino, Stefano Zanero, and
Michele Carminati. You might have known it earlier: Analyz-
ing the role of underground forums in threat intelligence. In The
27th International Symposium on Research in Attacks, Intrusions and
Defenses, RAID. ACM, 2024.

[74] Youngja Park and Taesung Lee. Full-stack information extraction
system for cybersecurity intelligence. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing:
EMNLP. Association for Computational Linguistics, 2022.

[75] Youngja Park and Weiqiu You. A pretrained language model for
cyber threat intelligence. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing: EMNLP. Asso-
ciation for Computational Linguistics, 2023.

[76] Joël Plisson, Nada Lavrac, and Dunja Mladenic. A rule based ap-
proach to word lemmatization. In Proceedings of IS. Citeseer, 2004.

[77] Fariha Ishrat Rahman, Sadaf Md. Halim, Anoop Singhal, and Latifur
Khan. ALERT: A framework for efficient extraction of attack tech-
niques from cyber threat intelligence reports using active learning. In
Data and Applications Security and Privacy XXXVIII - 38th Annual
IFIP WG 11.3 Conference, DBSec, Lecture Notes in Computer Sci-
ence. Springer, 2024.

[78] Priyanka Ranade, Aritran Piplai, Anupam Joshi, and Tim Finin. Cy-
bert: Contextualized embeddings for the cybersecurity domain. In
2021 IEEE International Conference on Big Data (Big Data). IEEE,
2021.

[79] Nanda Rani, Bikash Saha, Vikas Maurya, and Sandeep Kumar Shukla.
Ttphunter: Automated extraction of actionable intelligence as ttps
from narrative threat reports. In Proceedings of the 2023 Australasian
Computer Science Week, ACSW. ACM, 2023.

[80] Nanda Rani, Bikash Saha, Vikas Maurya, and Sandeep Kumar Shukla.
Ttpxhunter: Actionable threat intelligence extraction as ttps from
finished cyber threat reports. CoRR, abs/2403.03267, 2024.

[81] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP. Association for Computational Lin-
guistics, 2019.

[82] James Ross and Jackie Lasky. Our tram large language model auto-
mates ttp identification in cti reports. https://medium.com/mitre
-engenuity/our-tram-large-language-model-automates-t
tp-identification-in-cti-reports-5bc0a30d4567, 2023.

[83] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat
Mondal, and Aman Chadha. A systematic survey of prompt engineer-
ing in large language models: Techniques and applications. CoRR,
abs/2402.07927, 2024.

[84] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108, 2019.

[85] Kiavash Satvat, Rigel Gjomemo, and V. N. Venkatakrishnan. Extrac-
tor: Extracting attack behavior from threat reports. In IEEE European
Symposium on Security and Privacy, EuroS&P. IEEE, 2021.

[86] Taneeya Satyapanich, Francis Ferraro, and Tim Finin. CASIE:
extracting cybersecurity event information from text. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI. AAAI Press, 2020.

[87] Samaneh Shafee, Alysson Bessani, and Pedro M. Ferreira. Evaluation
of llm-based chatbots for osint-based cyber threat awareness. Expert
Syst. Appl., 2025.

[88] Giuseppe Siracusano, Davide Sanvito, Roberto Gonzalez, Manikan-
tan Srinivasan, Sivakaman Kamatchi, Wataru Takahashi, Masaru
Kawakita, Takahiro Kakumaru, and Roberto Bifulco. Time for action:
Automated analysis of cyber threat intelligence in the wild. CoRR,
abs/2307.10214, 2023.

[89] Blake E. Strom, Andy Applebaum, Doug P. Miller, Kathryn C. Nickels,
Adam G. Pennington, and Cody B. Thomas. MITRE ATT&CK®:
Design and Philosophy. In The MITRE Corporation, editor, MITRE,
2018. https://attack.mitre.org/, retrieved 2024-10-22.

[90] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune
BERT for text classification? In Chinese Computational Linguistics
- 18th China National Conference, CCL, Lecture Notes in Computer
Science. Springer, 2019.

https://github.com/center-for-threat-informed-defense/tram
https://github.com/center-for-threat-informed-defense/tram
https://medium.com/mitre-engenuity/our-tram-large-language-model-automates-ttp-identification-in-cti -reports-5bc0a30d4567
https://medium.com/mitre-engenuity/our-tram-large-language-model-automates-ttp-identification-in-cti -reports-5bc0a30d4567
https://medium.com/mitre-engenuity/our-tram-large-language-model-automates-ttp-identification-in-cti -reports-5bc0a30d4567
https://attack.mitre.org/

[91] Binhui Tang, Junfeng Wang, Huanran Qiu, Jian Yu, Zhongkun Yu,
and Shijia Liu. Attack behavior extraction based on heterogeneous cy-
berthreat intelligence and graph convolutional networks. Computers,
Materials & Continua, 2023.

[92] Wiem Tounsi. What is cyber threat intelligence and how is it evolv-
ing? Cyber-Vigilance and Digital Trust: Cyber Security in the Era of
Cloud Computing and IoT, 2019.

[93] Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms
still can’t plan; can lrms? a preliminary evaluation of openai’s o1 on
planbench. arXiv preprint arXiv:2409.13373, 2024.

[94] Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller,
Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas,
Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern
bidirectional encoder for fast, memory efficient, and long context
finetuning and inference. CoRR, abs/2412.13663, 2024.

[95] Jonathan J. Webster and Chunyu Kit. Tokenization as the initial
phase in NLP. In 14th International Conference on Computational
Linguistics, COLING, 1992.

[96] Jason W. Wei and Kai Zou. EDA: easy data augmentation techniques
for boosting performance on text classification tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP. Association for Computa-
tional Linguistics, 2019.

[97] Ming Xu, Hongtai Wang, Jiahao Liu, Yun Lin, Chenyang Xu, Yingshi
Liu, Hoon Wei Lim, and Jin Song Dong. Intelex: A llm-driven attack-
level threat intelligence extraction framework. CoRR, abs/2412.10872,
2024.

[98] Jingchen Yan, Zhe Du, Jifang Li, Shiduo Yang, Jinghao Li, and Jianbin
Li. A threat intelligence analysis method based on feature weight-
ing and bert-bigru for industrial internet of things. Security and
Communication Networks, 2022.

[99] Sarah Yoder. Automating mapping to att&ck: The threat report att&ck
mapper (tram) tool. https://medium.com/mitre-attack/auto
mating-mapping-to-attack-tram-1bb1b44bda76, 2019.

[100] Weiqiu You and Youngja Park. Cyber-attack technique classi-
fication using two-stage trained large language models. CoRR,
abs/2411.18755, 2024.

[101] Yizhe You, Jun Jiang, Zhengwei Jiang, Peian Yang, Baoxu Liu,
Huamin Feng, Xuren Wang, and Ning Li. TIM: threat context-
enhanced TTP intelligence mining on unstructured threat data.
Cybersecurity, 2022.

[102] Fengrui Yu and Yanhui Du. Few-shot learning of ttps classification
using large language models. preprints.org, Jan 2024.

[103] Huixia Zhang, Guowei Shen, Chun Guo, Yunhe Cui, and Chaohui
Jiang. Ex-action: Automatically extracting threat actions from cyber
threat intelligence report based on multimodal learning. Security and
Communication Networks, 2021.

[104] Tianjun Zhang, Shishir G. Patil, Naman Jain, Sheng Shen, Matei Za-
haria, Ion Stoica, and Joseph E. Gonzalez. RAFT: adapting language
model to domain specific RAG. CoRR, abs/2403.10131, 2024.

[105] Yongheng Zhang, Tingwen Du, Yunshan Ma, Xiang Wang, Yi Xie,
Guozheng Yang, Yuliang Lu, and Ee-Chien Chang. Attackg+:boosting
attack knowledge graph construction with large language models.
CoRR, abs/2405.04753, 2024.

[106] Jun Zhao, Qiben Yan, Jianxin Li, Minglai Shao, Zuti He, and Bo Li.
Timiner: Automatically extracting and analyzing categorized cyber
threat intelligence from social data. In Computers & Security, 2020.

[107] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh.
Calibrate before use: Improving few-shot performance of language
models. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, Proceedings of Machine Learning
Research. PMLR, 2021.

[108] Yue Zhou, Chenlu Guo, Xu Wang, Yi Chang, and Yuan Wu. A survey
on data augmentation in large model era. CoRR, abs/2401.15422,
2024.

[109] Ziyun Zhu and Tudor Dumitras. Chainsmith: Automatically learning
the semantics of malicious campaigns by mining threat intelligence
reports. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P. IEEE, 2018.

Appendix

A Discussion on Implementations

As discussed in Sections 4.2, 5.2, and 6.2, our implementa-
tions capture the core, fundamental Natural Language Pro-
cessing (NLP) methodologies adopted by state-of-the-art ap-
proaches. Note that studying individual tools falls out of the
scope of this work since our goal is not to select a specific im-
plementation instance, but to clarify the current limitations of
the NLP methodologies. Our implementations do not capture
additional components proposed by the literature, which are
not part of the core NLP methodology, nor compositions of
the aforementioned approaches.

NER. The core method is composed of the sequence of steps
listed in Section 4.1, and for each of them, we consider the
implementation specifically tailored for the Cyber Threat
Intelligence domain. We exclude additional optimizations
on the ontology class matching, as they are developed for
custom ontologies (e.g., BM25 [38], or Entropy and Mu-
tual Information [39], or custom algorithms [103]). Some
works [58,85,86] include Relation Extraction (RE) – an NLP
task that consists in identifying semantic relations among
parts of text – to connect tokens related to TTPs into an “at-
tack behavior graph”. Studying knowledge graphs falls out
of scope with respect to this work. Extractor [85] identifies
attack actions through a custom gazetteer, and uses Semantic
Role Labeling (SRL) to perform RE. AttacKG [58] includes
a graph-alignment algorithm to match TTPs over a similarly
constructed graph.

Classification. The identified core methodology involves
classifying input sentences into ATT&CK Technique classes
using fine-tuned BERT-based text classifiers [22], sentence
transformer models [81], and data augmentation approaches
(see Section 5.1). All selected works [6, 24, 37, 56, 77, 79, 80,
82, 98, 100] share this BERT-based methodology, differing
mainly in minor changes or optimizations. To fairly com-
pare their classification performance, we reimplement these
core methods, intentionally omitting ad-hoc refinements such
as additional layers (e.g., a Bidirectional Gated Recurrent
Unit (BiGRU) layer, rarely included in the regular architec-
ture in [98]), ontology-based embeddings (e.g., [37]), active
learning strategies [77], post-processing algorithms to correct
predicted labels [56], and multi-stage training processes [100].
Unlike TTPHunter [79], TTPXHunter [80], and ALERT [77],
which use the softmax activation function in the classifier’s

https://medium.com/mitre-attack/automating-mapping-to-attack-tram-1bb1b44bda76
https://medium.com/mitre-attack/automating-mapping-to-attack-tram-1bb1b44bda76

output layer, we use sigmoid, which is most commonly used
in multi-label classification scenarios as the one presented in
this work. Alam et al. [5] employ a similar unlabeled classifier
architecture but compare embeddings at the sentence-slice
level—rather than the full-sentence level—with a weighted
sum of embeddings obtained separately from ATT&CK TTP
titles and descriptions. Instead, we follow the established prac-
tice of generating embeddings by concatenating these two
textual elements, aligning our methodology with other promi-
nent studies [1,49]. Following a similar approach, we evaluate
only the data augmentation optimization, as commonly pro-
posed in the literature [35, 45, 80, 100].
Generation. The main component consists of the LLM model,
which is usually enriched via context in the prompt, through
fine-tuning, or by making use of further processing steps.

All works use exactly our presented core methods or slight
modifications. For example, Fieblinger et al. [26], AECR [14],
Fengrui et al. [102] use the SFT in the same way as we do,
except that AECR replaces the last layer of the tokenizer
selection with a classification layer, which should lead to less
hallucination. The methodology of Fengrui et al. corresponds
to our “Raw” experiment in table 10. The same method of
RAG is also used by Fayyazi et al. [24] and IntelEX [97],
except that in IntelEX an LLM-as-a-judge is taken afterward
to validate the results again for higher precision. FSP has the
greatest variations, but also the most similar findings within
the works. For example, CTINexus [15], Kumarasinghe et
al. [49] and Fieblinger et al. [26] report instability problems
or biases as reported in Section 6.2. While the last two works.
[26, 49] use FSP as we do, CTINexus [15] tries to solve the
problem of static FSP entries by using a RAG system for
FSP examples to avoid FSP bias. AttacKG+ [105] first tries to
determine ATT&CK tactics and then enriches the prompt with
all corresponding technique descriptions, which we classify
as a “rudimentary” RAG system.

A.1 Comparison of Implementations

Table 13: Comparison of performances between related works
and our corresponding implementations on AnnoCTR [50].
F1-Scores are calculated on increasing sets of TTPs from
AnnoCTR.

AnnoCTR

Approach Method Open-set Scenario (#TTPs)

F1 (50) F1 (118) F1 (637)

NER AttacKG [58] 42.78% 32.14% 23.75%
Ours 59.91% 41.27% 35.55%

Classification LADDER [5] 24.03% 22.34% 18.07%
Ours 51.05% 33.96% 13.03%

Generation aCTIon [88] 30.45 (± 2.51)% 22.52 (±2.54)% 8.65 (± 1.92)%
Ours 43.00% 35.90% 25.90%

As mentioned in Section A, comparison of all individual
state-of-the-art methods in a unified setting is, unfortunately,

unfeasible due to frequent lack of data, code, and ontology.
When those elements were available 14, we tested individual
approaches and compared their performances with the un-
derlying core methodology implementations. Since models
and hyper-parameter values provided by original papers were
tuned on different data, a fair comparison scenario can be
provided using the “open-set scenario” experimental setup
shown in Section 7. We use the original approaches to process
input documents from the AnnoCTR dataset, obtain a list of
techniques, and then evaluate the performances according to
the metrics defined in Section 3.3. Interestingly, results in
Table 13 show that optimizations proposed by original pa-
pers do not seem to generalize well to different data (and
TTP) distributions: in most cases, our implementations have
much higher performances. For example, the optimizations
proposed by LADDER [5] seem to negatively impact the per-
formances on both top-10 and top-118 common TTPs found
in AnnoCTR documents. Most likely, such optimizations are
too specialized for the specific testbed employed in the paper,
often in the form of custom annotated datasets, and chosen
sets of TTPs. Additionally, Table 13 shows that similarly to
our results in Figure 4, a scaling behavior can be observed
when increasing the number of TTPs, as well as higher aver-
age performances shown by traditional NER approaches. but
it also evinces that our implementations are not representative
of customized approaches. In conclusion, our results show
that a direct comparison of these works with their customized
optimizations is not appropriate, and emphasize the need to
focus on the underlying core NLP methods in order to be able
to make generalizable statements.

B Generation: Additional Experiments

We can extract the concrete MITRE concepts from the text
output of generative LLMs by matching the concepts by their
names or their IDs. Both ways give similar performances as
shown in Table 14. As mentioned in Section 6.2, the LLM

Table 14: Comparison of ID vs. Name matching at document
and sentence level with generative LLMs with a raw prompt
on AnnoCTR.

Level String-Matching F1 Recall Precision

Document-Level ID 0.267 0.262 0.314
Name 0.270 0.271 0.329

Sentence-Level ID 0.303 0.508 0.244
Name 0.299 0.522 0.233

instruction datasets created from TRAM2 can be enriched

14Siracusano et al. [88] include in their paper all the original prompts
and used models (GPT-3.5Turbo) required to extract attack patterns, enabling
us to reproduce their approach. The technique assignment hyper-parameter
empirically found by the authors is not specified, so we calculate mean and
standard deviation over 5 runs with increasing values.

Table 15: Comparison between TRAM2 RAG and the origi-
nal TRAM2 datasets. Differences from the original TRAM2
dataset are in parentheses.

TRAM2

Method F1-Score (%) Precision (%) Recall (%)

SFT Raw 56.8 (-15.7) 54.6 (-25.4) 59.1 (-7.2)
SFT RAG 67.5 (+2.0) 68.2 (-7.8) 66.9 (+9.3)
SFT FSP+RAG 62.1 (-2.5) 69.4 (-7.0) 56.2 (+0.2)

Table 16: Test results of Llama3.3-70B-Instruct in comparison
with Llama3.1-8B-Instruct (differences in parentheses).

TRAM2

Method F1-Score (%) Precision (%) Recall (%)

Raw 47.5 (-1.7) 38.9 (-0.7) 68.1 (+3.0)
RAG 51.3 (-2.8) 49.5 (+4.0) 59.6 (-7.2)

with RAG entries, based on an idea from Zhang et al. [104].
The final performances of fine-tuning with RAG and with-
out are, however, quite similar as shown in Table 15. We
also compared the significantly larger Llama3.3-70B-Instruct
model with the performance of the Llama3.1-8B-Instruct
model in Table 16. The same prompts were used without
any adjustments. The results on the TRAM2 test data set are
even slightly worse than with the smaller model. We can ob-
serve that the prompt (and the associated performance) is also
strongly model dependent, even though it is a model from the
same company and from the same LLama3 family.

C Hyper-parameter tuning of Classification
Approaches

To investigate the impact of hyperparameter choices on model
performance, we conducted a grid search analysis over five
sets of hyperparameters using the RoBERTaLarge model on
the TRAM2 dataset. This involves re-evaluating the final test

Batch Size Pos Weight η End Factor Frozen Layers F1 (mean)

8

10

12

14

16

0.0

2.5

5.0

7.5

10.0

0.000010

0.000015

0.000020

0.000025

0.000030

0.0

0.2

0.4

0.6

0

5

10

15

20

0.67

0.68

0.69

0.70

Figure 5: Parallel coordinates plot of the top-15 hyper-
parameters combinations. In blue higher values of F1-Score,
in red lower values.

scores for each combination of hyperparameters, allowing us
to identify which settings leads to the best results. Namely,
the parameters are the batch size, the weight given to positive
samples in the binary cross-entropy loss (Pos Weight), the
learning rate (η), the decay of the learning rate (End Factor),
and the number of frozen (i.e., non-trainable) encoding lay-
ers (Frozen Layers). In total, the same model is fine-tuned
on 72 different combinations of such hyper-parameters. Fig-
ure 5 shows the best 15 combinations. Some hyper-parameters
slightly decrease the performance. In particular, this happens
when we let the learning rate decay to 0 during the train-
ing process, when assigning a weight to the positive class,
and when using larger learning rates. Other hyper-parameters
seem to have a small impact on the final results. In general,
the impact of optimal hyper-parameters is small: the F1-score
reaches an increment of 0.11%.

D Models Tested

Table 17: Models used
Model Parameters Domain Type

BERTBase, Uncased 1.10∗108 General Classification (Encoder)
BERTBase, Cased 1.10∗108 General Classification (Encoder)

RoBERTaBase 1.25∗108 General Classification (Encoder)
XLM-RoBERTaBase 2.78∗108 General Classification (Encoder)

RoBERTaLarge 3.55∗108 General Classification (Encoder)
XLM-RoBERTaLarge 5.60∗108 General Classification (Encoder)

DarkBERT 1.25∗108 CTI Classification (Encoder)
SecBERT 8.35∗107 CTI Classification (Encoder)

SecRoBERTa 8.35∗107 CTI Classification (Encoder)
CySecBERT 1.10∗108 CTI Classification (Encoder)

SciBERTCased 1.10∗108 Scientific Classification (Encoder)
SciBERTUncased 1.10∗108 Scientific Classification (Encoder)

CyBERT 1.11∗108 CTI Classification (Encoder)
SecureBERT 1.25∗108 CTI Classification (Encoder)

SBERT (All-MPNet-Base-V2) 1.10∗108 General Sentence Similarity
ATTACK-BERT 1.10∗108 CTI Sentence Similarity

SentSecBert10k 8.35∗107 CTI Sentence Similarity
SFR-Embedding-2_R 7.11∗109 General Sentence Similarity

BAAI/bge-en-icl 7.11∗109 General Sentence Similarity
NV-Embed-V2 7.85∗109 General Sentence Similarity

Qwen2-7b 7.07∗109 General Generative (Decoder)
LLama-3.18B 8.03∗109 General Generative (Decoder)

LLama-3.370B 7.00∗1010 General Generative (Decoder)

In Table 17, we provide a list of all the models we have tested.

E Closed-set Scenario with Increasing Labels

In this section, we compare NER, Classification, and Gen-
eration approaches on increasing amount of labels to iden-
tify. As in the Open-set Scenario (see Section 7), we se-
lect the AnnoCTR dataset as it has the highest number of
(sub-)techniques. The tested models are respectively opti-
mized on the label set. The final results in Figure 6 show that
Classification approaches overperform other models when
labeled data is available. Meanwhile, Generation approaches
surpass NER models after 50 labels.

0 20 40 60 80 100 120
0

20

40

60

80

Number of Techniques

Pe
rf

or
m

an
ce

(%
)

NER
Classification
Generation
Precision
Recall
F1-Score

Figure 6: Comparison of performance on the top-k most com-
mon ATT&CK techniques for the AnnoCTR dataset with the
best achieving approaches.

F Error Co-occurrences

T
10

03
.0

0
1

T
1
00

5
T

1
01

2
T

1
01

6
T

10
21

.0
0
1

T
1
02

7
T

1
03

3
T

10
36

.0
0
5

T
1
04

1
T

1
04

7
T

10
53

.0
0
5

T
1
05

5
T

10
56

.0
0
1

T
1
05

7
T

10
59

.0
0
3

T
1
06

8
T

10
70

.0
0
4

T
10

71
.0

0
1

T
1
07

2
T

10
74

.0
0
1

T
1
07

8
T

1
08

2
T

1
08

3
T

1
09

0
T

1
09

5
T

1
10

5
T

1
10

6
T

1
11

0
T

1
11

2
T

1
11

3
T

1
14

0
T

1
19

0
T

12
04

.0
0
2

T
1
21

0
T

12
18

.0
1
1

T
1
21

9
T

14
84

.0
0
1

T
15

18
.0

0
1

T
15

43
.0

0
3

T
15

47
.0

0
1

T
15

48
.0

0
2

T
15

52
.0

0
1

T
15

57
.0

0
1

T
15

62
.0

0
1

T
15

64
.0

0
1

T
15

66
.0

0
1

T
15

69
.0

0
2

T
1
57

0
T

15
73

.0
0
1

T
15

74
.0

0
2

Predicted Labels

T1003.001
T1005
T1012
T1016

T1021.001
T1027
T1033

T1036.005
T1041
T1047

T1053.005
T1055

T1056.001
T1057

T1059.003
T1068

T1070.004
T1071.001

T1072
T1074.001

T1078
T1082
T1083
T1090
T1095
T1105
T1106
T1110
T1112
T1113
T1140
T1190

T1204.002
T1210

T1218.011
T1219

T1484.001
T1518.001
T1543.003
T1547.001
T1548.002
T1552.001
T1557.001
T1562.001
T1564.001
T1566.001
T1569.002

T1570
T1573.001
T1574.002

T
ru

e
L

ab
el

s

0

1

2

3

4

5

Figure 7: Error label co-occurrence matrix calculated on the
TRAM2 test set.

In Figure 7, we show co-occurring labels on the TRAM2
test, calculated from RoBERTaLarge. On the y-axis, it shows
the true labels appearing in the test samples; on the x-axis,
it shows the erroneously predicted labels. Overall, it can be
observed that many labels tend to co-occur more frequently
than others, probably due to their similarity in meaning.

	Introduction
	Systematization
	Literature Collection
	Named Entity Recognition (NER)
	Methods

	Classification
	Methods

	Generation
	Methods

	Literature Takeaways

	Empirical Analysis: Setup
	Ontology
	Datasets
	Metrics

	Empirical Analysis: NER
	Methods and Adaptations
	Evaluation

	Empirical Analysis: Classification
	Methods and Adaptation
	Evaluation

	Empirical Analysis: Generation
	Methods and Adaptation
	Evaluation

	Empirical Analysis: Overall Comparison
	Limitations
	Conclusion and Takeaways
	Appendix
	Discussion on Implementations
	Comparison of Implementations

	Generation: Additional Experiments
	Hyper-parameter tuning of Classification Approaches
	Models Tested
	Closed-set Scenario with Increasing Labels
	Error Co-occurrences

